

Hughes Information Technology Corporation
Upper Marlboro, MD

305-CD-044-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Telemetry Design Specification

for the ECS Project

October 1995

Hughes Information Technology Corporation

Upper Marlboro, Maryland

Flight Operations Segment (FOS)
Telemetry Design Specification

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

APPROVED BY

Cal Moore, FOS CCB Chairman Date
EOSDIS Core System Project

Cal Moore /s/ 9/22/95

ii 305-CD-044-001

This page intentionally left blank.

iii 305-CD-044-001

Preface

This document, one of nineteen, comprises the detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project in-
clude:

305-CD-040 FOS Design Specification (Segment Level Design)

305-CD-041 Planning and Scheduling Design Specification

305-CD-042 Command Management Design Specification

305-CD-043 Resource Management Design Specification

305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification

305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification

305-CD-050 Planning and Scheduling Program PDL

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL

305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http://edhs1.gs-
fc.nasa.gov.

iv 305-CD-044-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, MD 20785

v 305-CD-044-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed de-
sign. The first document, the FOS Segment Level Design, provides an overview of the FOS seg-
ment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem de-
sign.

Keywords: FOS, design, specification, analysis, IST, EOC

vi 305-CD-044-001

This page intentionally left blank.

vii 305-CD-044-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through vii Original

1 -1 and 1-2 Original

2-1 through 2-4 Original

3-1 through 3-84 Original

GL-1 through GL-8 Original

Document History

Document
Number

Status/Issue Publication Date CCR Number

305-CD-044-001 Original October 1995 95-0679

viii 305-CD-044-001

This page intentionally left blank.

ix 305-CD-044-001

Contents

Preface

Abstract

Change Information Page

1. Introduction

1.1 Identification ... 1-1
1.2 Scope.. 1-1
1.3 Purpose... 1-1
1.4 Status and Schedule .. 1-1
1.5 Document Organization .. 1-1

2. Related Documentation

2.1 Parent Document ... 2-1
2.2 Applicable Documents .. 2-1
2.3 Information Documents .. 2-2

2.3.1 Information Document Referenced ... 2-2

3.Telemetry

3.1 Telemetry Context Description.. 3-1
3.2 Telemetry Decommutation ... 3-3

3.2.1 Telemetry Decommutation Context .. 3-3
3.2.2 Telemetry Decommutation Interfaces ... 3-5
3.2.3 Telemetry Decommutation Object Model .. 3-5
3.2.4 Telemetry Decommutation Dynamic Model ... 3-11
3.2.5 Telemetry Decommutation Data Dictionary... 3-28

3.3 Memory Dump ... 3-42
3.3.1 Memory Dump Context .. 3-42
3.3.2 Memory Dump Interfaces .. 3-44
3.3.3 Memory Dump Object Model .. 3-44
3.3.4 Memory Dump Dynamic Model .. 3-46
3.3.5 Memory Dump Data Dictionary ... 3-51

x 305-CD-044-001

3.4 Spacecraft State Check .. 3-53
3.4.1 Spacecraft State Check Context ... 3-53
3.4.2 Spacecraft State Check Interfaces .. 3-55
3.4.3 Spacecraft State Check Object Model ... 3-56
3.4.4 Spacecraft State Check Dynamic Model ... 3-58
3.4.5 Spacecraft State Check Data Dictionary... 3-65

3.5 Parameter Server .. 3-66
3.5.1 Parameter Server Context ... 3-66
3.5.2 Parameter Server Interfaces ... 3-68
3.5.3 Parameter Server Object Model ... 3-68
3.5.4 Parameter Server Dynamic Model ... 3-70
3.5.5 Parameter Server Data Dictionary .. 3-78

Abbreviations and Acronyms

Glossary

Figures

3.1-1 Telemetry Context Diagram .. 3-2
3.2-1 Telemetry Decommutation Context Diagram ... 3-4
3.2-2 Telemetry Decommutation Object Model ... 3-6
3.2-3 Parameter Table Object Model ... 3-8
3.2-4 Derived Telemetry Object Model .. 3-10
3.2-5 Decommutate an EDU Event Trace ... 3-12
3.2-6 Select Subsystem Decommutation Mode Event Trace... 3-14
3.2-7 Turn Archiving Mode On Event Trace... 3-16
3.2-8 Read a Database Event Trace ... 3-17
3.2-9 Telemetry Derived Parameters Event Trace .. 3-19
3.2-10 Set Polynomial Coefficients for EU Conversion Event Trace...................................... 3-21
3.2-11 Request to Adjust Limits Event Trace ... 3-23
3.2-12 Obtain Current Limit Values Event Trace ... 3-25
3.2-13 Parameter Updating Event Trace ... 3-27
3.3-1 Memory Dump Context Diagram ... 3-43
3.3-2 Memory Dump Object Model .. 3-45
3.3-3 Memory Dump State Transition Diagram ... 3-47
3.3-4 Awaiting Message State Event Trace ... 3-48
3.3-5 Dump Mode State Event Trace .. 3-50
3.4-1 Spacecraft State Check Context Diagram .. 3-54

xi 305-CD-044-001

3.4-2 Spacecraft State Check Object Model .. 3-57
3.4-3 Initialize Spacecraft State Check Event Trace.. 3-59
3.4-4 Load Expected State Table Event Trace .. 3-61
3.4-5 State Check BaseLine Event Trace .. 3-62
3.4-6 State Check Perform Event Trace .. 3-64
3.5-1 Parameter Server Context Diagram ... 3-67
3.5-2 Parameter Server Object Model ... 3-69
3.5-3 Register a Continuous User Event Trace .. 3-71
3.5-4 Register a One Shot User Event Trace ... 3-73
3.5-5 Send Buffer to Continuous Client Event Trace ... 3-75
3.5-6 Update Client Interests Event Trace .. 3-76

Tables

3.2-1. Telemetry Decommutation Interfaces.. 3-5
3.3-1 Memory Dump Interfaces ... 3-44
3.4-1 Spacecraft State Check Interfaces... 3-55
3.5-1 Parameter Server Interfaces ... 3-68

Abbreviations and Acronyms

Glossary

xii 305-CD-044-001

This page intentionally left blank.

1-1 305-CD-044-001

1. Introduction

1.1 Identification
The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL item 046
305/DV2 under Contract NAS5-60000.

1.2 Scope
The Flight Operations Segment (FOS) Design Specification defines the detailed design of the FOS.
It allocates the level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 053, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It covers releases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose
The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule
This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. This document is under the ECS Project configuration
control.

1.5 Document Organization
305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

1-2 305-CD-044-001

305-CD-047 contains the detailed design for Analysis Design Specification.

305-CD-048 contains the detailed design for User Interface Design Specification.

305-CD-049 contains the detailed design for Data Management Design Specification.

305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

2-1 305-CD-044-001

2. Related Documentation

2.1 Parent Document
The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 2: Mission Specific

2.2 Applicable Documents
The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS) and
the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software Development
and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schema for the ECS Project

502-ICD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Jet Propulsion Laboratory and the Goddard Space Flight
Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Mission Operations Centers
and the Network Control Center Data System

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Payload Operations Control
Centers and the Network Control Center Data System

2-2 305-CD-044-001

530-DFCD-NCCDS/POCCGoddard Space Flight Center/MO&DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

540-041 Interface Control Document (ICD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations Center
(EOC), Review

560-EDOS-0230.0001 Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format Requirements
Document (DFRD)

ICD-106 Martin Marietta Corporation, Interface Control Document (ICD) Data
Format Control Book for EOS-AM Spacecraft

none Goddard Space Flight Center, Earth Observing System (EOS) AM-1
Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design
Specification.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the ECS
Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms

222-TP-003-006 Release Plan Content Description

2-3 305-CD-044-001

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-4 305-CD-044-001

This page intentionally left blank.

3-1 305-CD-044-001

3. Telemetry

The telemetry subsystem provides the capability to ingest, decommutate, convert, and limit check
housekeeping, memory dump, or engineering telemetry data from the EOS spacecraft and instru-
ments. The telemetry subsystem also provides mechanisms to calculate derived parameters and to
extract and forward subsets of the processed telemetry. The telemetry subsystem has the ability to
receive and process real-time contact or historical replay telemetry. Real-time spacecraft state-
checking is an additional capability.

3.1 Telemetry Context Description
The telemetry subsystem context diagram shown in Figure 3.1-1 depicts the data flows between
the FOS Telemetry Subsystem and the external ground system as well as EOC internal compo-
nents. Descriptions of the data flows are summarized for each component:

EDOS: The EDOS forwards telemetry to the Telemetry Subsystem via EDOS Data
Units(EDUs). Each EDU contains a reconstructed CCSDS telemetry packet, quality
information, and time stamp. The packetized message transports either real-time or
simulated spacecraft telemetry. The Telemetry Subsystem receives spacecraft and
instrument Housekeeping (H/K), Health and Safety (H/S), and Diagnostic memory dump
data.

FDF: The Flight Dynamics Facility receives real-time, decommutated attitude telemetry.
This telemetry subset provides the FDF with spacecraft attitude information which allows
the FDF to track and recommend spacecraft orbit adjustments.

FOS Command Subsystem: The Command Subsystem receives decommutated or derived
telemetry values that facilitate the verification of real-time and spacecraft stored
commands.

FOS User Interface: The User Interface receives and displays decommutated or derived
telemetry values, event information, and status information generated by the Telemetry
Subsystem.

FOS Analysis Subsystem: The Analysis Subsystem receives decommutated or derived
historical telemetry values that facilitate analysis and trending of spacecraft subsystem
health and anomalies.

FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by the Telemetry Subsystem for real-time or historical
telemetry processing. This data includes telemetry database selections, EDOS and client
communication channels, and user configuration requests. Checkpoint information and
user directive status is forwarded from the Telemetry Subsystem to the Resource
Management Subsystem.

FOS Data Management Subsystem: As part of the Telemetry Subsystem initialization
phase, telemetry database information concerning telemetry decommutation, conversion,

3-2
305-C

D
-044-001

FOS
Telemetry
Subsystem

EDOS

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem

FOS
Analysis

Subsystem

FDF

FOS
User

Interface

FOS
Command
Subsystem

MSS
Management
Subsystem

This System

Tlm DB
Historical EDUs

Expected S/C State

Config Info
User Control Directives

EDUs
Events

Memory Dump

EDUs

Checkpoint Info
Directive Status Attitude

Tlm

Tlm Values

Parameter List

Parameter
List

Tlm
Values

Status
Information

Tlm Values
Events

Parameter
List

 Figure 3.1-1. Telemetry Context Diagram

3-3 305-CD-044-001

and checking is retrieved from the Data Management Subsystem. During a real-time
spacecraft contact, telemetry EDUs, memory dump data, and telemetry events are
forwarded to the Data Management Subsystem for storage and processing. The Data
Management Subsystem supplies historical telemetry EDUs to the Telemetry Subsystem
during FOS replays or telemetry analysis.

 CSMS Management Subsystem: The CSMS Management Subsystem processes
messages and collects information pertaining to the status of the Telemetry Subsystem.

3.2 Telemetry Decommutation
The Telemetry Decommutation component provides the capability to decommutate, convert, and
limit check housekeeping or engineering telemetry data from the EOS spacecraft and instruments.
Telemetry decommutation also provides the mechanisms to calculate derived parameters.

3.2.1Telemetry Decommutation Context

The telemetry decommutation context diagram shown in Figure 3.2-1 depicts the data flows be-
tween the FOS Telemetry Subsystem and external ground system as well as EOC internal compo-
nents. Descriptions of the data flows are summarized for each component:

EDOS: The EDOS forwards telemetry to decommutate via EDOS Data Units (EDUs).
Each EDU contains a reconstructed CCSDS telemetry packet, quality information, and
time stamp. The packetized message transports either real-time or simulated spacecraft
telemetry. Telemetry decommutation receives spacecraft and instrument Housekeeping (H/
K) and Health and Safety (H/S).

Parameter Server: The Parameter Server receives parameters from Decom.

FOS Data Management Subsystem: As part of the telemetry decommutation initialization
phase, telemetry database information concerning decommutation, conversion, and
checking is retrieved from the Data Management Subsystem. During a real-time spacecraft
contact, telemetry EDUs, and telemetry events are forwarded to the Data Management
Subsystem for storage and processing. The Data Management Subsystem supplies
historical telemetry EDUs to the Telemetry Subsystem during FOS replays or telemetry
analysis.

FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by Telemetry Decommutation for real-time or
historical telemetry processing. This data includes telemetry database selections, EDOS
and client communication channels, and user configuration requests. Checkpoint
information and user directive status are forwarded from Telemetry Decommutation to the
Resource Management Subsystem.

3-4
305-C

D
-044-001

 FOS
Telemetry
Subsystem

EDOS

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem

FOS
Analysis

Subsystem

FDF

FOS
User

Interface

FOS
Command
Subsystem

CSMS
Managemnet
Subsystem

This System

Tlm DB
Historical EDUs

Expected S/C State

Config Info
User Control Directives

EDUs
Events

Memory Dump

EDUs

Checkpoint Info
Directive Status Attitude

Tlm

Tlm Values

Parameter List

Parameter
List

Tlm
Values

Status
Information

Tlm Values
Events

Parameter
List

Figure 3.2-1. Telemetry Decommutation Context Diagram

3-5 305-CD-044-001

 3.2.2 Telemetry Decommutation Interfaces

3.2.3 Telemetry Decommutation Object Model

The telemetry decommutation object model is shown in Figure 3.2-2.

FtTlTelemetryConfig class handles configuration requests from the user. This class is a proxy
for the Resource Management System.

FtTlConfigRequest class is the link class used to carry the information from the FtTlDumpConfig
proxy to the memory dump process.

FtTlTelemetryController class is the controller of the telemetry decommutation process. This
class configures the process and initiates the decommutation process.

FoGnTlmSourceIF class is the telemetry source interface. This class receives the data and han-
dles the communications layer interface.

FtTlEdu class obtains and verifies the critical information from the EDU. If archiving is enabled,
this class sends the EDUs to be archived by DMS.

FtTlDecom inherits from the FtTlEdu class which inherits from the FoGnTlmSourceIF class. This
class iterates over its FtTlPacketMaps searching for the correct map to use for decommutation.

FtTlPacketMap class contains the maps for the parameters to decommutate. This class iterates
over its FtTlParamMaps searching for the correct map to use to decommutate the parameter.

FtTlContextDepMap class contains the maps of all of the possible context dependent maps for a
single parameter. This class iterates over its FtTlDecomContextSwitch class searching for the pa-
rameter that is the context dependent switch.

FtTlContextSwitch class compares the high and low values of the context switch parameters to
determine which one is the correct switch for the context dependent parameter and checks the qual-
ity of the context switch parameter.

Table 3.2-1. Telemetry Decommutation Interfaces
Interface
Service

Interface Class Interface Class Description Service Provider Service
User

Frequency

Telemetry
Configuration
Proxy

FtTlTelemetryConfig Provides for configuring and
adjusting of a telemetry
process

TLM RMS At
initialization
of a
telemetry
process and
upon user
directive

EDOS interface FtTlEdu Provides EDUs for
decommutation

TLM TLM Every EDU

Parameter
Server interface

FoPsClientIF Provides telemetry parameters
to other
subsystems

TLM TLM
RMS
CMD
FUI

As requested
by the user

Telemetry
Archiver
interface

FdArTlmArchProxy Archives EDUs DMS TLM At every
EDU

3-6 305-CD-044-001

Figure 3.2-2. Telemetry Decommutation Object Model

Proxy for CMS

FoGnTlmSourceIf

FtTlEdu

FdArTlmArchProxy

FtTlTelemetryController

FtTlDecom

FtTlPacketMap

FtTlParamMap

FtTlParameterTable

FtTlContextSwitch

FtTlRawMap

FtTlComponentMap

FtTlContextDepMap

FtTlDecomContextSwitch

FtTlTelemetryConfig

myCurrentValue

myContextPid

myLoValue

myHiValue

*myContextPtr

Compare(Type)

Compare(&ContextQuality)

myNumSwitches

myDecomContextSwitch

Decom(const &myEdu, const &myParameterTable)

myEdu

myParameterTable

myRawMap

Decom(const &inEdu, const &inParameterTable)

mySourceBitOffset

mySourceBitLength

myTargetBitOffset

Decom(&myEdu, &myTargetParameter)

GetFirstBitOffset()

myEdu

myParameterTable

Decom(const &myEdu)

myParameters[TlCMaxNumParameters]

myStatus

ReadDatabase(*Filename)

WriteDatabase(*Filename)

GetActiveflag(inPid)

SetQuality(inPid, inQuality)

GetQuality(inPid)

GetConvertedValue(inPid)

GetDecodedValue(inPid)

GetRawValue(inPid)

Update(inPid, inRawValue)

GetCurrentValue(inContextPid)

SetLimits(Pid, GroupId, Type)

myParamMap

myEdu

myParameterTable

myNumPacketParams

Decom(const &myEdu, const &myParameterTable)

myNumPacketMap

myPacketMap

Decom(const &inParameterTable)

WriteDatabase(char *Filename)

ReadDatabase(char *Filename)

myPacketSeqNo

myPacketApid

myExpectedPacketApid

myPacketLength

myExpectedPacketLength

myPacketScTime

myArchiveFlag

myHeaderFlag

GetCriticalInfo()

ReceiveData()

Verify()

GrabPacketDataBits(offset, length)

SetArchiveFlag(inArchiveFlag)

GetArchiveFlag()

SetHeaderFlag(inHeaderFlag)

GetHeaderFlag()

myConfigRequest

SendConfigRequest(&ConfigRequest)

SendConfigRequest()

myParameterTable

myDecom

myDerivedTelemetryMap

myConfigRequest

ProcessRequest()

Initialize()

Run()

Shutdown()

myBufferSize

myStream

myTimeoutInterval

myListenPort

myBufferPtr

myDmsEventPtr

*myBuffer

ReceiveData()

GrabBits(offset, length)

myRequestType

myFilename

myMode

myPid

mySubsystemId

myDropout

myDerivedUpdateRate

myPort

myLimitGroup

myRangeLimit[]

myEUType

myEUConversion

myEUCoefficients[]

Receive()

GetRequestType()

GetFilename()

GetMode()

GetPid()

GetSubsystemId()

GetDropout()

GetDerivedUpdateRate()

GetPort()

GetLimitGroup()

GetDirection()

GetType()

GetValue()

GetEUType()

GetEUConversion()

GetEUCoefficients()

send()

receive()

1-8

myPid

myRawValue

myTargetParameter

*myComponentMap

myFirstBit

myFirstBitOffset

Decom(const &Edu, &myParameterTable)

GetPid()

FtTlConfigRequest

 - : EcTDouble

 - : EcTInt

 - : EcTDouble

 - : EcTDouble

 - : FtTlParameter

 + : EcTBoolean

 + : EcTInt

 - : EcTInt

 - : FtTlDecomContextswitch*

 + : EcTInt

 - : FtTlEdu

 - : FtTlparameterTable

 - : FtTlRawMap

 + : EcTInt

 - : EcTInt

 - : EcTInt

 - : EcTInt

 + : EcTVoid

 + : EcTInt

 - : FtTlEdu&

 - : FtTlParameterTable&

 + : EcTVoid

 - : FtTlParameter

 - : EcTInt

 + : EcTVoid

 + : EcTVoid

 + : EcTInt

 + : EcTVoid

 + : EcTLong

 + : EcTDouble

 + : EcTLong

 + : EcTLong

 + : EcTVoid

 + : EcTFloat

 + : FtTlLimits

 - : FtTlParamMap

 - : FtTlEdu&

 - : FtTlParameterTable&

 - : EcTInt

 + : EcTInt

 - : EcTInt

 - : FtTlPacketMap*

 + : EcTInt

 + : EcTVoid

 + : EcTVoid

 - : EcTInt

 - : EcTInt

 - : EcTInt

 - : EcTInt

 - : EcTInt

 - : EcTChar*

 - : EcTInt

 - : EcTInt

 + : EcTInt

 + : EcTInt

 + : EctInt

 + : EcTInt

 + : EcTVoid

 + : EcTInt

 + : EcTVoid

 + : EcTInt

 - : FtTlConfigRequest

 + : EcTInt

 + : EcTInt

 - : FtTlParameterTable

 - : FtTlDecom

 - : FtTlDerivedTelemetryMap

 - : FtTlConfigRequest

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

 + : EcTVoid

± : EcTInt

 ± : istream

 ± : EcTInt

 ± : EcTInt

 ± : EcTChar*

 ± : EcTString*

 ± : EcTChar

 + : EcTInt

 + : EcTInt

 - : EcTEnum

 - : EcTString

 - : EcTEnum

 - : EcTEnum

 - : EcTEnum

 - : EcTInt

 - : EcTInt

 - : EcTInt

 - : EcTInt

 - : struct

 - : EcTInt

 - : EcTInt

 - : EcTFloat

 + : EcTVoid

 + : EcTEnum

 + : EcTString

 + : EcTEnum

 + : EcTEnum

 + : EcTEnum

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTEnum

 + : EcTInt

 + : <type>

 + : EcTInt

 + : EcTInt

 + : EcTFloat*

 + : int

 + : int

 - : EcTInt

 - : EcTLong

 - : EcTLong

 - : FtTlComponentMap

 - : EcTInt

 - : EcTInt

 + : EcTInt

 + : EcTInt

determined
by

update by

3-7 305-CD-044-001

FtTlDecomContextSwitch class inherits from FtTlContextSwitch. Once the switch is found, the
FtTlRawMap can be determined.

FtTlRawMap class iterates over its FtTlComponentMaps searching for the correct place in the tar-
get parameter for each component.

FtTlComponentMap class uses the bit offset and the bit length to determine the correct placement
of each bit that makes up the parameter. Once the target parameter is filled FtTlParameterTable is
updated.

The parameter table object model is shown in Figure 3.2-3.

FtTlParameterTable class is a table that holds all of the telemetry parameters. It has the ability
to update different values of the parameter.

FtTlParameterValues class contains all of the values of each parameter that is sent to the param-
eter server. This class has the ability to retreive each of the values.

FtTlStatus class represents all of the statuses of a parameter. This class is sent along with the Ft-
TlParameterValues to the parameter server.

FtTlParameter class represents the different kinds of parameters. A parameter can be analog or
discrete. This class has the ability to retreive the values of the range limits. It can also set the range
limit values and the delta limit values. Selective decommutation for a single parameter is set in
this class.

FtTlDecode class determines the decoded value of the parameter.

FtTlDeltaLimit class has the delta limit value and checks if the parameter's value has exceeded
the delta limit. The delta limit value can also be set in this class.

FtTlDiscreteParam class represents a discrete parameter. Discrete parameters can be range limit
checked and may be context dependent.

FtTlAnalogParam class represents a analog parameter. Analog parameters can be EU converted,
range limit checked, and may be context dependent. The EU conversion type and the range limit
set can be selected by the user.

FtTlConversionSet class represents the conversion sets defined for a parameter. There can be up
to four EU conversions defined for each parameter. The current EU conversion can be

selected by the user. FtTlConversionSet iterates over its FtTlEuConversions searching for the al-
gorithm that is selected. If no algorithm is selected, the FtTlParameterContextSwitch is consulted
to determine the correct algorithm to use.

FtTlParameterContextSwitch class inherits from FtTlContextSwitch. The FtTlParameterCon-
textSwitch is used to determine the FtTlLimitSet or the FtTlConversionSet to use if one is not al-
ready defined or selected by the user.

FtTlPolyConversion class is the polynomial conversion class. This class uses the polynomial
equation to EU convert the parameter's decoded value.

FtTlExponentialConversion class is the exponential conversion class. This class uses the expo-
nential conversion equation to EU convert the parameter's decoded value.

3-8 305-CD-044-001

Figure 3.2-3. Parameter Table Object Model

myStatus

FtTlParameterTable

FtTlParameterValues

FtTlParameter

FtTlAnalogParam

FtTlDiscreteParam

FtTlLimitSet

FtTlBoundaryGroup

FtTlLimits

FtTlDeltaLimit

FtTlDecode

FtTlConversionSet

FtTlEuConversion

FtTlContextSwitch

GetLimits(GroupId, LimitType)
SetLimits(GroupId, LimitType, Direction, Value)
AdjustBoundaryGroup(&inNewBoundaryGroup)
SelectBoundaryGroup(&inSelectedGroup)

FtTlPolyConversion

FtTlLineConversion

FtTlLineSegment

FtTlExponentialConversion

Check(inValue, myLimitStatus)

myDecodedValue

Decode(inRawValue)
DecodeValue()

FtTlTelemetryController

FtTlStatus

RwHashDictionary

RwCollectable

FoPsClientIF

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myCurrentValue
myContextPid
myLoValue
myHiValue
*myContextPtr

Compare(Type)
Compare(&ContextQuality)

myParameterTable
myDecom
myDerivedTelemetryMap
myConfigRequest

ProcessRequest()
Initialize()
Run()
Shutdown()

myMnemonic[MaxMnemonicLength +1]
myDecomFlag
myActiveFlag
myStaticToggle
myNumberOfValues
myValuesServedFlag

GetActiveFlag()
SetActiveFlag(inFlagValue)
GetDecomFlag()
SetDecomFlag(inFlagValue)
SetValuesServedFlag(inFlagValue)
Update(inRawValue)
UpdateValue(inDecodedValue)
SetDecodeValue()
ConvertValue()
SetQuality(inQuality)
SelectDecom(Mode)
SetDeltaLimit(Value)
SetLimits(GroupId, Type, Direction, Value)
GetLimits(GroupId, Type)

myPid
myRawValue
myDecodedValue
myConvertedValue
*myMnemonic
myFirstBitOffset
myStatus
myQuality
mySubSystemId

GetRawValue()
GetDecodedValue()
GetConvertedValue()
GetQuality()
GetSubSystemId()

myDelta
myPreviousRawValue
*myStatus
mySenseCount
mySenseInterval

Check()

myParameters[TlCMaxNumParameters]
myStatus

ReadDatabase(*Filename)
WriteDatabase(*Filename)
GetActiveflag(inPid)
SetQuality(inPid, inQuality)
GetQuality(inPid)
GetConvertedValue(inPid)
GetDecodedValue(inPid)
GetRawValue(inPid)
Update(inPid, inRawValue)
GetCurrentValue(inContextPid)
SetLimits(Pid, GroupId, Type)

myStatus
myValue
myContextSwitch
myCurrentState
*myLimitSets
myLimitstate
myResult
mySenseInterval
mySenseCount

AdjustBoundaryGroup(&newBoundaryGroup)
FindGroup()
GetCurrentState()
GetLimits(LimitType)
SetLimits(LimitType, Direction, Value)
Check(myValue, &inLimitStatus)

myvalue
myStatus
myLimitType
myHiValue
myLoValue

Check(myValue)
AdjustBoundaryGroup()
SetLoValue(Value)
SetHiValue(Value)

myCurrentLineSegment
myLineSegments

Convert(inDecodedValue, &myEuStatus)

myX1
myY1
myX2
myY2
myActiveFlag
mySlope
myIntercept
myDecodedValue
myCurrentSegmentFlag

ComputeSlopeIntercept()
Check(inDecodedValue)
Convert(inDecodedValue)

myEuValue
myEuStatus
myDeltaStatus
myLimitStatus
&myConversionSet

UpdateValue(inDecodedValue)
GetConversion(ConversionId)
SelectConversion(ConversionId)
SetConversion(ConversionId,Coefficient,Value)

*myConversions
&myCurrentconversion
myMaxConversions
*myNewCoefficients
myConvertedValue

SelectCurrentConversion(&inSelectedConversion)
AdjustCurrentCoefficients(*inNewCoefficients)
Convert(inDecodedValue, &inEuStatus)
SelectConversion(ConversionId)
SetConversion(ConversionId, Coefficient, Value)

&myCurrentGroup
*myBoundaryGroups
myMaxGroups

&myLimitSet
myLimitStatus
&myDeltaLimit
*myDeltaStatus

Updatevalue(inDecodedValue)

*myStatus
myStatusType

Set(inStatusType, *inStatus)
Get(inStatusType)

FtTlParameterContextSwitch

myStatus

Compare()

*myNewCoefficients
*myCoefficients

AdjustCurrentCoefficients(*inNewCoefficients)
SetCoefficient(Coefficient, Value)
Convert(inDecodedValue, &inEuStatus)

e
*myNewCoefficients
*myCoeffients

AdjustCurrentCoefficients(*inNewCoefficients)
SetCoefficient(Coefficient, Value)
Convert(inDecodedValue, &inEuStatus)

mySelectedFlag
&myContextSwitch
myEuValue
myStatus
*myNewCoefficients

AdjustCurrentCoefficients(*inNewCoefficients)
Convert(inDecodeValue, &inEuStatus)
SetCoefficient(Coefficient, Value)

 - : StatusType

 + : FtTlLimits
 + : EcTVoid
 + : Type
 + : Type
 + : EcTInt

 - = EcTLong

 + : virtual EcTVoid
 + : EcTLong

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : EcTDouble
 - : EcTInt
 - : EcTDouble
 - : EcTDouble
 - : FtTlParameter

 + : EcTBoolean
 + : EcTInt

 - : FtTlParameterTable
 - : FtTlDecom
 - : FtTlDerivedTelemetryMap
 - : FtTlConfigRequest

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : EcTChar
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : virtual EcTVoid
 + : EcTVoid
 + : EcTDouble
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : FtTlLimits

 - : EcTInt
 - : EcTLong
 - : EcTDouble
 - : EcTDouble
 - : EcTChar
 - : EcTInt
 - : FtTlStatus
 - : EcTLong
 - : EcTLong

 + : EcTLong
 + : EcTDouble
 + : EcTDouble
 + : EcTLong
 + : EcTLong

 - : EcTInt
 - : EcTLong
 - : EcTChar
 - : EcTInt
 - : EcTInt

 + : EcTInt

 - : FtTlParameter
 - : EcTInt

 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTLong
 + : EcTDouble
 + : EcTLong
 + : EcTLong
 + : EcTVoid
 + : EcTFloat
 + : FtTlLimits

 - : EcTString
 - : Type
 - : FtTlContextSwitch<Type>
 - : EcTString
 - : FtTlLimit
 - : EcTString
 - : EcTInt
 - : EcTInt
 - : EcTInt

 + : Type
 + : EcTInt
 + : EcTString
 + : FtTlLimits
 + : EcTVoid
 + : Type

 - : <Type>
 - : EcTString
 - : EcTString
 - : <Type>
 - : <Type>

 + : EcTString
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : FtTlLineSegment*

 + : EcTDouble

± : EcTFloat
 ± : EcTFloat
 ± : EcTFloat
 ± : EcTFloat
 ± : EcTInt
 ± : EcTFloat
 ± : EcTFloat
 ± : EcTLong
 ± : EcTInt

 + : EcTVoid
 + : EcTInt
 + : EcTDouble

 - : EcTDouble
 - : EcTChar*
 - : EcTChar*
 - : StatusType
 - : FtTlConversionSet

 + : virtual EcTVoid
 + : FtTlEuConversion
 + : EcTVoid
 + : EcTVoid

 - : FtTlEuConversion[]
 - : FtTlEuConversion
 - : EcTInt
 - : EcTFloat
 - : EcTDouble

 + : EcTVoid
 + : EcTFloat
 + : virtual EcTDouble
 + : EcTVoid
 + : EcTVoid

 - : Type
 - : Type
 - : EcTInt

 ± : FtTlLimitSet
 ± : StatusType
 ± : FtTlDeltaLimit
 ± : EcTChar

 + : virtual EcTVoid

 ± : EcTChar
 ± : StatusType

 + : EcTVoid
 + : EcTChar*

 - : EcTInt

 + : EcTInt

 - : EcTFloat
 - : EcTFloat

 + : EcTVoid
 + : EcTVoid
 + : EcTDouble

 - : EcTFloat
 - : EcTFloat
 - : EcTFloat

 + : EcTVoid
 + : EctVoid
 + : EcTDouble

 - : EcTInt
 - : FtTlContextSwitch
 - : EcTDouble
 - : EcTInt
 - : EcTFloat

 + : virtual EcTVoid
 + : virtual EctDouble

± : virtual EctVoid

is included by

1-4

has

is owned by

bounded by

1-4

switched by

switches
switches

decodes

checks

connects to
parameter server by

3-9 305-CD-044-001

FtTlLineConversion class is the line conversion class. This class iterates over its FtTlLineSeg-
ments searching for the correct segment to use to determine the line conversion to use to EU con-
vert the decoded value.

FtTlLineSegment class represents one line segment that can be used to EU convert the decoded
value.

FtTlLimitSet class represents the limit sets that are defined for a parameter's range limit checking.
If a particular FtTlLimitSet is not defined for the parameter, the parameter's FtTlParameterCon-
textSwitch is consulted to determine the correct FtTlLimitSet to use. FtTlLimitSet contains up to
four FtTlBoundaryGroups that can be defined for each parameter.

FtTlBoundaryGroup class represents a boundary group. FtTlBoundaryGroup iterates over its Ft-
TlLimits checking the range limits.

FtTlLimits class contains the high and low range limit values that are used to determine if a pa-
rameter's value has violated the range limits. This class also allows the user to set the range limit
values.

The Derived Telemetry object model is shown in Figure 3.2-4.

FtTlDerivedTelemetryMap class contains FtTlEquations that are used to calculate derived telem-
etry parameter values.

FtTlEquation class contains FtTlElements that represents the equation that is used to derive a pa-
rameter.

FtTlElement class is an abstract base class that represents all of the possible parts of an equation.

FtTlParamOperand class is the operand of the equation for the derived parameter.

FtTlConstant class represents a constant in an equation for the derived parameter.

FtTlOperator class represents the operator for the equation of the derived parameter.

FtTlAdd class represents the arithmetic addition operator.

FtTlArcCos class represents the arithmetic arc cosine function.

FtTlNegate class the arithmetic unary minus operator.

FtTlArcSin class represents the arithmetic arcsine function.

FtTlGreaterOrEqual class represents the logical greater than or equal to operator.

FtTlSubtract class represents the arithmetic subtraction operator.

FtTlMultiply class represents the arithmetic multiplication operator.

FtTlDivide class represents the arithmetic division operator.

FtTlEqual class represents the logical equality operator.

FtTlNotEqual class represents the logical inequality operator.

FtTlGreater class represents the logical greater than operator.

FtTlTan class represents the arithmetic tangent function.

FtTlArcTan class represents the arithmetic arctangent function.

FtTlCos class represents the arithmetic cosine function.

3-10
305-C

D
-044-001

FtTlEquation

FtTlDerivedTelemetryMap

FtTlElement

FtTlOperator
FtTlConstant

FtTlParameter

FtTlTelemetryController

FtTlParamOperand

FtTlAnd

FtTlOrFtTlAdd

FtTlSubtract FtTlSin

FtTlMultiply

FtTlDivide

FtTlNegate FtTlArcSin FtTlCos

FtTlArcCos

FtTlTan

FtTlArcTan

FtTlEqual

FtTlNotEqual FtTlLess

FtTlGreater

FtTlGreaterOrEqual

FtTlLessOrEqual

FtTlNot

myEquations
myCurrentTime
myWorkspace

GetRate(Pid)
Decom()
SetDerived(Pid,Rate)
Initialize()

myParameterTablePtr
myPid
myValue
myQuality

Initialize(&ParameterTablePtr)
Operate(WorkspacePtr)
CheckQuality()

myValue
myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality
myValue

Initialize(&ParameterTablePtr)
CheckQuality()
Operate(WorkSpacePtr)

myMnemonic[MaxMnemonicLength +1]
myDecomFlag
myActiveFlag
myStaticToggle
myNumberOfValues
myValuesServedFlag

GetActiveFlag()
SetActiveFlag(inFlagValue)
GetDecomFlag()
SetDecomFlag(inFlagValue)
SetValuesServedFlag(inFlagValue)
Update(inRawValue)
UpdateValue(inDecodedValue)
SetDecodeValue()
ConvertValue()
SetQuality(inQuality)
SelectDecom(Mode)
SetDeltaLimit(Value)
SetLimits(GroupId, Type, Direction, Value)
GetLimits(GroupId, Type)

myEnabledFlag
myRawValue
myQuality
myUpdateInterval
myNextUpdateTime

GetRate()
IsDue(CurrentTime)
Calculate(WorkspacePtr)
SetEnabledFlag(Flag)
SetUpdateRate(Seconds)
SetNextUpdate()
IsEnabled()

myQuality

CheckQuality()
Operate(WorkSpacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

Operate(WorkspacePtr)
CheckQuality()

myParameterTable
myDecom
myDerivedTelemetryMap
myConfigRequest

ProcessRequest()
Initialize()
Run()
Shutdown()

myQuality

CheckQuality()
Operation(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

myQuality

CheckQuality()
Operate(WorkspacePtr)

 - : FtTlParameterTable
 - : EcTInt
 - : EcTFloat
 - : EcTInt

 + : EcTVoid
 + : EcTInt
 + : EcTInt

 - : EcTFloat
 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTint

 - : EcTInt
 - : EcTFloat

 + : virtual EcTVoid
 + : virtual EcTInt
 + : virtual EcTInt

 - : EcTChar
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : virtual EcTVoid
 + : EcTVoid
 + : EcTDouble
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : FtTlLimits

± : EcTInt
 ± : EcTLong
 ± : EcTInt
 ± : EcTInt
 ± : EcTInt

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTVoid
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : ECTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : FtTlParameterTable
 - : FtTlDecom
 - : FtTlDerivedTelemetryMap
 - : FtTlConfigRequest

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

Updates

Enables/
Changes Rate of

Update

Gives value
and quality

to

Figure 3.2-4. Derived Telemetry Object Model

3-11 305-CD-044-001

FtTlLess class represents the less than operator.

FtTlOr class represents the logical OR operator.

FtTlSin class represents the arithmetic sine function.

FtTlLessOrEqual class represents the logical less than or equal to operator.

FtTlNot class represents the logical NOT operator

3.2.4 Telemetry Decommutation Dynamic Model

The telemetry subsystem is dynamically modeled through scenarios and event trace diagrams de-
picting the sequence of events to process spacecraft and instrument telemetry. Scenarios for the
telemetry subsystem model nominal sequences of events to ingest telemetry data and decommu-
tate parameters from the telemetry. The following scenarios are described in this section:

Decommutate an EDU

Telemetry Derived Parameters

Request to Adjust Limits

Telemetry Dropout

Parameter Updating

Parameter Server Processing

3.2.4.1 Decommutate an EDU Scenario

3.2.4.1.1 Decommutate an EDU Scenario Abstract

The purpose of the decommutate an EDU scenario is to describe the process of building and up-
dating parameters from decommuted telemetry EDUs that are received from the EDOS interface.
The event trace for this scenario can be found in Figure 3.2-5.

3.2.4.1.2 Decommutate an EDU Summary Information

Interfaces:

Edos Interface

Stimulus:

FtTlEdu receives EDU data from the EDOS interface.

Desired Response:

Parameters are built and updated from decommutated telemetry.

Pre-Conditions:

The Telemetry Subsystem is configured to accept telemetry EDUs of a particular format
from EDOS.

Post-Conditions:

The Telemetry Subsystem is ready to receive additional EDUs.

3-12
305-C

D
-044-001

FtTlDecomController FtTlDecom FtTlPacketMap FtTlContextDepMap FtTlDecomContextSwitch
FtTlRawMap FtTlComponentMap FtTlParameterTable

Data Available

Check Context

Done

Done

Decommutate

Decommutate

Context Failed

Check Context

Decom

Decom

Done

Decom

Done

Update Parameter

Done

Done
Done

Done

Figure 3.2-5. Decommutate an EDU Event Trace

3-13 305-CD-044-001

3.2.4.1.3 Decommutate an EDU Scenario Description

FtTlDecomController initiates the storage and decommutation of a telemetry EDU. FtTlEdu ex-
tracts the EDU header fields.The packet APID, length, and sequence count are verified. Next, Ft-
TlDecom initiates the extraction and decommutation of the packet data fields using
FtTlPacketMap. FtTlDecom uses information from FtTlEdu to extract the needed bits from the
telemetry stream. When a component is context dependent, FtTlContextDepMap initiates the op-
eration which performs the association between the context switched component position and a
particular component. If it is determined that context is dependent upon the value of an associated
discrete, the switch value is compared to the value of the associated discrete within FtTlCon-
textSwitch until a match is found. When a match is found, the proper FtTlRawMap is called upon
to extract the needed bits from the telemetry stream. FtTlRawMap is consulted again for the next
component position for the next component to be extracted. FtTlRawMap is asked to assemble a
parameter's raw value when all the telemetry information gathering for a given parameter is com-
plete. FtTlParameterTable is called to update the parameter. These events are repeated for each
component needed to build each parameter.

3.2.4.2 Select Subsystem Decommutation Mode Scenario

3.2.4.2.1 Select Subsystem Decommutation Mode Scenario Abstract

This scenario describes how to select the mode in a decommutation process. The event trace for
this scenario can be found in Figure 3.2-6.

3.2.4.2.2 Select Subsystem Decommutation Mode Summary Information

Interfaces:

RMS

Stimulus:

This scenario occurs when an active decom process is started, or by user directive.

Desired Response:

All parameters within a Subsystem will be decommutated.

Pre-Conditions:

None.

Post-Conditions:

 None.

3.2.4.2.3 Select Subsystem Decommutation Mode Scenario Description

FtTlTelemetryConfig sends a FtTlConfigRequest to FtTlTelemetryController requesting that de-
commutation mode be set within a specified subsystem. FtTlTelemetryController calls FtTlConf-
igRequest to receive the request. FtTlTelemetryController then calls FtTlConfigRequest to get the
request type. When the type is to set the telemetry decommutation mode, FtTlTelemetryController
calls FtTlConfigRequest to get the decommutation mode. FtTlTelemetryController then calls Ft-
TlParameterTable to get the FtTlParameter. FtTlTelemetryController then calls FtTlParameter to

3-14
305-C

D
-044-001

FtTlTelemetryConfig FtTlTelemetryController FtTlConfigRequest FtTlParameterTable FtTlParameter

configuration request
available

receive request

request received

get request type

request type

get limit request type

limit request type

parameter

subsystem id

set decom mode

mode set

for
each

parameter

get subsystem id

get parameter

get decom mode

decom mode

status

Figure 3.2-6. Select Subsystem Decommutation Mode Event Trace

3-15 305-CD-044-001

get the subsystem id of that parameter. If the subsystem id is the same as the requested subsystem
id, then FtTlTelemetryController calls FtTlParameter to set the telemetry decommutation mode.
When FtTlParameter is finished, FtTlTelemetryController returns to an idle state.

3.2.4.3 Turn Archiving Mode On Scenario

3.2.4.3.1 Turn Archiving Mode On Scenario Abstract

This scenario describes how archiving mode is turned on in a decommutation process. The event
trace for this scenario is shown in Figure 3.2-7.

3.2.4.3.2 Turn Archiving Mode On Scenario Summary Information

Interfaces:

RMS

Stimulus:

This scenario occurs when an active decommutation process is started, or by user directive

Desired Response:

All telemetry received by the decommutation process is forwarded to the archiving process.

Pre-Conditions:

None

Post-Conditions:

None

3.2.4.3.3 Turn Archiving Mode On Scenario Description

FtTlTelemetryConfig sends a FtTlConfigRequest to FtTlTelemetryController requesting that ar-
chiving be turned on. FtTlTelemetryController calls FtTlConfigRequest to receive the request. Ft-
TlTelemetryController then calls FtTlConfigRequest to get the request type. When the type is to
modify archiving, FtTlTelemetryController calls FtTlConfigRequest to get the archiving mode.
FtTlTelemetryController then calls FtTlDecom to set its archiving mode to the indicated mode.
When this mode is ON, the archiving is turned on. When FtTlDecom is finished, FtTlTelemetry-
Controller returns to an idle state.

3.2.4.4 Read a Database Scenario

3.2.4.4.1 Read a Database Scenario Abstract

This scenario describes how a decommutation process reads in a database. The event trace for this
scenario is shown in Figure 3.2-8.

3.2.4.4.2 Read a Database Scenario Summary Information

Interfaces:

RMS

Stimulus:

This scenario occurs when the decommutation process is started, or by user directive

3-16
305-C

D
-044-001

FtTlTelemetryConfig FtTlTelemetryController FtTlConfigRequest FtTlDecom

configuration request
available

receive request

request received

get request type

request type

get archive mode

archive mode

set archive flag on

archive flag set

status

Figure 3.2-7. Turn Archiving Mode On Event Trace

3-17
305-C

D
-044-001

FtTlTelemetryConfig FtTlTelemetryController FtTlConfigRequest FtTlDecom FtTlParameterTable

configuration request
available

receive request

request received

get request type

request type

read decom map
from database

decom map database read

read parameter information from database

parameter information read

get database file name

database file name

status

Figure 3.2-8. Read a Database Event Trace

3-18 305-CD-044-001

Desired Response:

A new database is loaded into the decommutation process.

Pre-Conditions:

Not in the middle of a decommutation session.

Post-Conditions:

None

3.2.4.4.3 Read a Database Scenario Description

FtTlTelemetryConfig sends a FtTlConfigRequest to FtTlTelemetryController requesting a new da-
tabase to be read in. FtTlTelemetryController calls FtTlConfigRequest to receive the request. Ft-
TlTelemetryController then calls FtTlConfigRequest to get the request type. When the type is to
read in a new database FtTlTelemetryController calls FtTlConfigRequest to get the database file
name. FtTlTelemetryController then calls FtTlDecom, telling it to read in the decommutation
maps from the indicated database. When FtTlDecom is finished reading, FtTlTelemetryController
calls FtTlParameterTable to read in the parameter information from the database. When FtTlPa-
rameterTable is finished FtTlTelemetryController returns to an idle state.

3.2.4.5 Telemetry Derived Parameters Scenario

3.2.4.5.1 Telemetry Derived Parameters Scenario Abstract

The purpose of the telemetry derived parameters scenario is to describe the process by which a pa-
rameter is updated with a calculated derived telemetry value. The event trace for this scenario can
be found in Figure 3.2-9.

3.2.4.5.2 Telemetry Derived Parameters Summary Information

Interfaces:

No External Interfaces

Stimulus:

An EDU has been fully decommutated.

Desired Response:

FtTlParameterTable will contain a calculated derived telemetry value.

Pre-Conditions:

All EDU telemetry samples have been decommutated and the packet's spacecraft time
stamp is available.

Post-Conditions:

 Updated derived parameter values are put into the parameter table.

3-19
305-C

D
-044-001

FtTlTelemetryConfig FtTlTelemetryController FtTlConfigRequest FtTlDecom FtTlParameterTable

configuration request
available

receive request

request received

get request type

request type

read decom map
from database

decom map database read

read parameter information from database

parameter information read

get database file name

database file name

status

Figure 3.2-9. Telemetry Derived Parameters Event Trace

3-20 305-CD-044-001

3.2.4.5.3 Telemetry Derived Parameters Scenario Description

FtTlDecomController initiates processing of the derived telemetry parameters that are constructed
using downlink telemetry and predefined constant information. FtTlDerivedTelemetryMap
checks if a FtTlEquation is enabled. If the FtTlEquation is enabled, FtTlDerivedTelemetryMap
checks if the FtTlEquation is due for update. By comparing the current time with the equation's
next update time, FtTlEquation determines whether the equation is to be calculated and sends a re-
sponse to FtTlDerivedTelemetryMap. When FtTlDerivedTelemetryMap receives confirmation,
FtTlEquation verifies if each FtTlParamOperand is of good quality. If the FtTlParamOperand is
good, FtTlEquation uses the operate member function of each FtTlElement to calculate the equa-
tions and update FtTlParameter. FtTlParameter contains the calculated derived telemetry value
and indicates when the calculation is complete. These events are repeated for subsequent equa-
tions.

3.2.4.6 Set Polynomial Coefficients for EU Conversion Scenario

3.2.4.6.1 Set Polynomial Coefficients for EU Conversion Scenario Abstract

This scenario describes how to set the engineering unit conversion algorithm coefficients in a de-
commutation process. The event trace for this scenario is shown in Figure 3.2-10.

3.2.4.6.2 Set Polynomial Coefficients for EU Conversion Summary Information

Interfaces:

Resource Management.

Stimulus:

By user directive.

Desired Response:

The coefficients in the indicated engineering unit conversion algorithm will be replaced
with a new set of coefficients.

Pre-Conditions:

None

Post-Conditions:

None

3-21
305-C

D
-044-001

FtTlTelemetryConfig FtTlConfigRequestFtTlTelemetryController FtTlAnalogParam FtTlConversionSet FtTlPolyConversion
FtTlParameterTable

Configuration
request

available

receive
request

request
received

get request
type

request type

get Pid

Pid

get type

get coefficient information

parameter

get parameter

type

coefficient information

set conversion coefficients

set conversion
coefficients

set coefficient

coefficient set

coefficients set

for each
coefficient

done

status

Figure 3.2-10. Set Polynomial Coefficients for EU Conversion Event Trace

3-22 305-CD-044-001

3.2.4.6.3 Set Polynomial Coefficients for EU Conversion Scenario Description

FtTlTelemetryConfig sends a FtTlConfigRequest to FtTlTelemetryController requesting that the
engineering unit conversion algorithm coefficients be set for a specified algorithm. FtTlTeleme-
tryController calls FtTlConfigRequest to receive the request. FtTlTelemetryController then calls
FtTlConfigRequest to get the request type. When the type is to change the EU conversion coeffi-
cients, FtTlTelemetryController calls FtTlConfigRequest to get the Pid of the parameter whose co-
efficient we want to change. FtTlTelemetryController then calls FtTlParameterTable to get the
FtTlAnalogParam. For each coefficient that is to be changed, FtTlTelemetryController calls FtTl-
ConfigRequest to get the ConversionId, the CoefficientId and the CoefficientValue, then calls Ft-
TlAnalogParam to set the conversion coefficients of that parameter. FtTlAnalogParam calls
FtTlConversionSet to set the conversion coefficients. FtTlConversionSet uses the ConversionId
to determine which EU Conversion algorithm to modify and calls FtTlPolyConversion to set the
coefficient specified in CoefficientId to the value specified in CoefficientValue. When FtTlTe-
lemetryController completes looping through each coefficient to be changed, it returns to an idle
state.

3.2.4.7 Request to Adjust Limits Scenario

3.2.4.7.1 Request to Adjust Limits Scenario Abstract

The purpose of the Request to Adjust Limits Scenario is to describe the process by which a request
to update range limits is handled. The event trace for this scenario can be found in Figure 3.2-11.

3.2.4.7.2 Request to Adjust Limits Summary Information

Interfaces:

Resource Management.

Stimulus:

By user directive.

Desired Response:

The range limits indicated will be replaced with a new set of coefficients.

Pre-Conditions:

None

Post-Conditions:

None

3-23
305-C

D
-044-001

FtTlTelemetryConfig FtTlConfigRequestFtTlTelemetryController FtTlParameter FtTlLimitSet FtTlBoundaryGroupFtTlParameterTable FtTlLimits

Configuration
request

available receive
request

request
received

get request
type

request type

get Pid

Pid

get type

get limit information

set limits

set limits

set limits

limits set

limits set

set new limit values

parameter

get parameter

type

done

limits set

limit information

status

Figure 3.2-11. Request to Adjust Limits Event Trace

3-24 305-CD-044-001

3.2.4.7.3 Request to Adjust Limits Scenario Description

FtTlTelemetryConfig sends a FtTlConfigRequest to FtTlTelemetryController requesting that the
range limits be adjusted for a specified parameter. FtTlTelemetryController calls FtTlConfigRe-
quest to receive the request. FtTlTelemetryController then calls FtTlConfigRequest to get the re-
quest type. When the type is to adjust parameter range limits, FtTlTelemetryController calls
FtTlConfigRequest to get the Pid of the parameter whose limits we want to change, and also to get
the type of limit request this is. FtTlTelemetryController then calls FtTlParameterTable to get the
FtTlParameter indicated by the Pid. When the type of limit request is range limits, then for each
range limit that is to be changed, FtTlTelemetryController calls FtTlConfigRequest to get the
GroupId, RangeLimitType, LimitDirection and the new LimitValue, then calls FtTlParameter to
set the limits using these new values. FtTlParameter calls FtTlLimitSet to set the limits. FtTlLim-
itSet uses the GroupId to determine which boundary group to use and calls FtTlBoundaryGroup to
set the limits. FtTlBoundaryGroup uses the direction to determine if this is a high or low value to
be set and it uses the RangeLimitType to determine the type of limit (i.e. Red, Yellow, etc.) and
then calls FtTlLimits to set the actual value. When each range limit is changed, FtTlTelemetry-
Controller returns to an idle state.

3.2.4.8 Obtain Current Limit Values Scenario

3.2.4.8.1 Obtain Current Limit Values Scenario Abstract

The purpose of this scenario is to describe the process by which a client can obtain the limits of a
given parameter. The event trace for this scenario is shown in Figure 3.2-12.

3.2.4.8.2 Obtain Current Limit Values Scenario Summary Information

Interfaces:

Resource Management.

Stimulus:

 A client request to obtain the limits of a given parameter.

Desired Response:

The limits of a given parameter are obtained.

Pre-Conditions:

None.

Post-Conditions:

None.

3-25
305-C

D
-044-001

FtTlTelemetryConfig
FtTlConfigRequest

FtTlTelemetryController
FtTlParameter FtTlLimitSet FtTlBoundaryGroupFtTlParameterTable FtTlLimits

Configuration
request

available
receive
request

request
received

get request
type

request type

get Pid

Pid

get group id

get type

group id

type

get limits
get limits

get limits

limits

limits
limitslimits

get high value

high value

add to request

done

get low limit

low limit

add to request

done

send

get limits

sent

Figure 3.2-12. Obtain Current Limit Values Event Trace

3-26 305-CD-044-001

3.2.4.8.3 Obtain Current Limit Values Scenario Description

The client sends a directive to the FtTlTelemetryController through the FtTlTelemetryConfig
proxy object by packaging the directive in a FtTlConfigRequest object. The FtTlTelemetryCon-
troller receives the FtTlConfigRequest object and determines the type. The type is determined to
be a limits directive with the objective to obtain the limits of a given parameter for display. The
FtTlTelemetryController calls the GetLimits operation of the FtTlParameterTable. The FtTlPa-
rameterTable then calls its GetParameter to get the parameter whose limits we want to obtain. The
FtTlParameterTable then calls FtTlParameter's GetLimits operation. The FtTlParameter knows of
its limit sets and then calls the GetLimits function of FtTlLimitSet. The FtTlLimitSet can then se-
lect the appropriate boundary group and call the GetLimits function of the FtTlBoundaryGroup.
This returns the correct FtTlLimits object back to the FtTlTelemetryController. The FtTlTeleme-
tryController then calls the GetHiValue and the GetLoValue functions of the FtTlLimits to add the
information to the FtTlConfigRequest to be sent back to the client. The decommutation process
goes back to blocking on incoming requests.

3.2.4.9 Parameter Updating Scenario

3.2.4.9.1 Parameter Updating Scenario Abstract

The purpose of the Parameter Updating scenario is to describe the process by which a parameter is
updated with EU converted and limit checked values. The event trace for this scenario can be
found in Figure 3.2-13.

3.2.4.9.2 Parameter Updating Summary Information

Interfaces:

No external interfaces.

Stimulus:

A raw value for an FtTlAnalogParam has been decommutated.

Desired Response:

Parameter updating completes.

Pre-Conditions:

All parameter raw bits have been extracted and assembled.

Post-Conditions:

A parameter is EU converted, limit checked, and ready to be sent to the users. The
Telemetry Subsystem is ready to process additional parameters.

3-27
305-C

D
-044-001

FtTlParameterTableFtTlRawMap FtTlAnalogParam FtTlDecode FtTlConversionSet FtTlParameterContextSwitchFtTlLimitSet FtTlContextSwitch FtTlLimitsFtTlEuConversion FtTlBoundaryGroup

Update

Decode Raw

Done

Convert

update

find conversion
set

not found

find context
switch

converted
converted

check range limits

find context switch

context switch found

find boundary
group

group not found

find context
switch find context

switch

done
done

done
done

find context
switch

context switch found

check range limits

done

Figure 3.2-13. Parameter Updating Event Trace

3-28 305-CD-044-001

3.2.4.9.3 Parameter Updating Scenario Description

FtTlRawMap gives the raw value to FtTlParameterTable and instructs the object to update. The
updating involves setting the raw value, performing engineering unit conversion and checking lim-
its. FtTlParameterTable instructs FtTlParameter to decode the raw value using FtTlDecode. Ft-
TlAnalogParam instructs FtTlConversionSet to convert the raw value. FtTlConversionSet uses the
FtTlEuConversion objects selected by the user. If none have been selected, each FtTlEuConver-
sion object consults its FtTlParameterContextSwitch. FtTlParameterContextSwitch consults its
FtTlContextSwitch to check if that context switch parameter is of bad quality or is marked static.
If the context switch is of good quality and is not marked static, FtTlContextSwitch compares its
low and high values to an associated FtTlDiscreteParam's value. If the discrete parameter's value
falls in the range between the two context switch values, the associated FtTlEuConversion is se-
lected. Otherwise, the next FtTlEuConversion consults its FtTlParameterContextSwitch until a
conversion is selected. FtTlEuConversion then converts the raw value to an EU value which is
then passed back to the FtTlConversionSet which passes the value to FtTlAnalogParam. Once the
conversion has been accomplished, FtTlAnalogParam instructs FtTlLimitSet to begin limit check-
ing. As with the conversion, FtTlLimitSet uses the FtTlBoundaryGroup selected by the user. Not
having found one, each FtTlBoundaryGroup consults its FtTlParameterContextSwitch until a
boundary group is selected. FtTlBoundaryGroup then calls FtTlLimits to compare either the raw
or the EU value with values corresponding to various states: rail low, red low, yellow low, yellow
high, red high and rail high. This status is then passed back to FtTlBoundaryGroup. If the status
is an alarm or warning state, mySenseCount is incremented. If mySenseCount exceeds my-
SenseInterval, an event message is generated. The status is then passed back to FtTlLimitSet and
then to FtTlAnalogParam. Parameter updating is complete.

3.2.5Telemetry Decommutation Data Dictionary

FdArTlmArchProxy - class that is a proxy from DMS that archives EDUs.

FoGnTlmSourceIF - class the initiates initialization of connections through a port. It receives a
data stream, checks for errors and writes the data to a buffer.

myBuffer - attribute that stores the data.

myBufferPtr - attribute that points to the location of the data in the data buffer.

myBufferSize - attribute that indicates the size of the buffer.

myDmsEventPtr - attribute that points to an event message when an error has occurred.

myListenPort - attribute that represents the listening port number.

myStream - attribute that represents the data stream.

myTimeoutInterval - attribute that represents the time interval between data.

GrabBits - operation that extracts bits from the buffer.

ReceiveData - operation that fills the buffer with data.

FtTlAdd - this class represents the arithmetic addition operator.

CheckQuality - this member function will check the quality of an operator.

myQuality - this member variable holds the quality information for an operator.

3-29 305-CD-044-001

Operate - this member function will remove two values from a stack and add them
together.

FtTlAnalogParam - class that corresponds to the analog parameter type. Analog parameters may
be engineering unit converted, boundary limit checked and delta limit checked.

ConversionSet - attribute that points to the conversion set associated with the parameter.

GetConversion - operation that returns a conversion.

myConvertedValue - attribute that contains the converted value.

myDeltaStatus - attribute that is the delta limit check status.

myEuStatus - attribute that holds the current EU conversion status.

myEuUnit - attribute that indicates the units in which the converted value is to be
interpreted.

myEuValue - attribute that holds the current EU converted value of the parameter.

myLimitStatus - attribute that points to the limit set associated with the parameter.

SelectConversion - operation that sets the conversion to use.

SetConversion - operation that configures the conversions.

UpdateValues - operation that updates the parameter value from the decoded value.

FtTlAnd - this class represents the logical AND operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and AND them.

myQuality - this member variable holds the quality information for an operator.

FtTlArcCos - this class represents the arithmetic arccosine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the
arccosine of that value.

myQuality - this member variable holds the quality information for an operator.

FtTlArcSin - this class represents the arithmetic arcsine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the arcsine
of that value.

myQuality - this member variable holds the quality information for an operator.

FtTlArcTan - this class represents the arithmetic arctangent function.

myQuality - this member variable holds the quality information for an operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the
arctangent of that value.

FtTlBoundaryGroup - class that represents a limit boundary group. The boundary group contains
the high and low warning and alarm boundary values.

myRailLimitsFlag - indicates if rail limits are defined for the parameter.

3-30 305-CD-044-001

myContextSwitch - attribute that, if present, provides an association between the boundary
group and a context switch. Context switching is based upon the value of a discrete
parameter.

myCurrentState - attribute that contains the parameter's current limit state.

myLimitSets - attribute that contains an array of limit types.

myLimitState - attribute that contains the type of limit violation that occurred.

myResult- attribute that indicates if a context switch was found for this parameter.

mySenseInterval- attribute that determines how often an out of limits event message is
generated.

mySenseCount - attribute that contains the number of times a parameter has been out of a
specific type of limits.

myStatus - attribute that contains the status of the boundary limit check.

myValue - attribute that contains the value that is being limit checked.

Check - operation that performs the boundary limit check.

FindGroup - operation that finds the boundary group using the context dependent
parameters.

GetCurrentState - operation that returns the current limit state.

GetLimits - operation that returns a set of limits.

SetLimit - operation that sets the limit of a certain type.

AdjustBoundaryGroup - operation that allows the user to adjust the limit values.

FtTlComponentMap - class that represents the component map. It gets the raw value.

mySourceBitOffset - attribute that contains the bit offset of the component.

mySourceBitLength - attribute that contains the length of the component.

myTargetBitOffset - attribute that contains the offset where the component fits into the
parameter.

Decom - operation that builds the parameter with the components.

GetFirstBitOffset - operation that returns the first bit's offset.

FtTlConfigRequest - class that corresponds to configuration update requests.

myDerivedUpdateRate - attribute that contains the rate of updating derived parameters.

myDropout - attribute that contains the dropout interval.

myEUCoefficients - attribute that contains the EU coefficients.

myEUConversion - attribute that contains the EU conversion indicator.

myEUType - attribute that contains the EU conversion type.

myFileName - attribute that contains the filename used for a WriteDatabase or ReadData-
base request.

myLimitGroup - attribute that contains the limit group to set.

3-31 305-CD-044-001

myMode - attribute that contains the on or off mode used for archiving or selective de-
com.

myPid - attribute that contains the parameter identification.

myPort - attribute that contains the input telemetry port.

myRangeLimit - attribute that contains the range limit information.

myRequestType - attribute that contains the type of request.

mySubsystemId - attribute that contains the subsystem identification.

GetDerivedUpdateRate - operation that returns the derived update rate.

GetDirection - operation that returns the range limit direction.

GetDropout - operation that returns the dropout interval.

GetEUCoefficients - operation that returns the EU coefficients.

GetEUConversion - operation that returns the EU conversion.

GetEUType - operation that returns the EU type.

GetFileName - operation that returns the filename.

GetLimitGroup - operation that returns the limit group.

GetMode - operation that returns the mode.

GetPid - operation that returns the parameter identification.

GetPort - operation that returns the telemetry port.

GetRequestType - operation that returns the request type.

GetSubsystemId - operation that returns the subsystem identification.

GetType - operation that returns the range limit type.

GetValue - operation that returns the range limit value.

Receive - operation that receives the data from an external interface.

FtTlConstant - this class represents constant values used in FtTlEquations for derived telemetry.

CheckQuality - this member function will check the quality of a constant.

Operate - this member function will place the constant on a stack for equation processing.

myValue - this member variable holds the value of the constant.

myQuality - this member variable holds the quality information for this constant.

FtTlContextDepMap - class that represents the map used to determine the context switch param-
eter.

myNumSwitches - attribute that contains the parameter's number of switches.

myDecomContextSwitch - attribute that is an array of decommutation context switches.

mySwitchNotFound - attribute that indicates if a context switch was not found for the
parameter.

Decom - operation that initiates the search for the switch mnemonic.

FtTlContextSwitch - class that corresponds to a switch that is used to change the context of an

3-32 305-CD-044-001

associated class. It can be used to alter the context of a telemetry stream position, an EU conver-
sion, or a limit boundary group.

myContextId - attribute that indicates the parameter ID that is used to enable or disable the
context switch

myContextPtr - attribute that is a pointer to the context parameter.

myLoValue - attribute that represents the minimum value used in determining the context
switch

myHiValue - attribute that represents the maximum value used in determining the context
switch.

myCurrentValue - attribute that represents the current value of the parameter.

Compare - operation that compares its high and low values with the parameter's value to
determine the context switch.

FtTlConversionSet - class that represents the set of EU conversions available to an associated an-
alog parameter.

myConversions - attribute that contains the list of available EU conversions.

myCurrentConversion - attribute that indicates which EU conversion is currently in use.

myConvertedValue - attribute that contains the EU converted value.

myMaxConversions - attribute that indicates the maximum number of conversions.

myNewCoefficients - attribute that contains the new coefficients entered by the user.

Convert - operation that initiates the raw to EU conversion.

SelectConversion - operation that allows the user to select the active conversion.

SetConversion - operation that sets the conversion coefficients.

AdjustCurrentCoefficients - operation that initiates the adjustment of coefficients.

FtTlCos - this class represents the arithmetic cosine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the cosine
of that value.

myQuality - this member variable holds the quality information for an operator.

FtTlDecode - abstract class that is used to provide the decoding algorithm.

myDecodeValue - attribute that contains the decoded value.

DecodeValue - operation that retrieves the decoded value.

FtTlDecom - class that represents the telemetry decommutation process

myNumPacketMap - attribute that indicates the number of packet maps.

myPacketMap - attribute that is an array of packet maps.

Decom - operation that finds the correct packet map to use.

ReadDatabase - operation that reads into memory the packet maps that are stored in the
file.

3-33 305-CD-044-001

WriteDatabase - operation that writes the current packet maps into the file.

FtTlDecomContextSwitch - class that represents a switch that is used to change the context of the
context dependent associated class.

myRawMap - attribute that indicates the decommutation map to use and is determined by
the context switch.

myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myParameterTable - attribute that represent the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates decommutation when the correct context switch is found.

FtTlDeltaLimit - class that represents an analog delta limit.

myDelta - attribute representing the maximum change allowed between consecutive
parameter samples.

myPreviousRawValue - attribute that contains the value of the previous sample of the
parameter. Checked against the current value to detect a delta violation.

myStatus - attribute that contains the status of the delta limit check.

mySenseInterval - attribute that represents the current delta-limit sense interval. This
attribute determines how often an event message is generated for a continuous delta-limit
condition.

mySenseCount - attribute that indicates how many times the parameter has consecutively
remained out of limits. This attribute will be compare against the sense interval.

Check - operation that performs the delta limit check.

FtTlDerivedTelemetryMap - this class represents the methods to use when deriving telemetry
values from other telemetry points.

Initialize - this member function will, among other things, initialize a pointer to the
Parameter Table and some other neat initialization things.

Decom - this member function is responsible for initiating the decommutation of derived
telemetry points.

myParameterTablePtr - this member variable points to the parameter table.

myEquations - this member variable points to the equations that are used to derive
telemetry points.

myCurrentTime - this member variable is the current time that is used to check against for
re-assembling equations.

myWorkSpace - this member variable is a pointer to the stack for evaluating equations.

FtTlDiscreteParam - class that corresponds to the discrete parameter type. Discrete parameters
may be boundary limit checked and delta limit checked.

myLimitSet - attribute that points to the limit set associated with the parameter.

myLimitStatus - attribute that indicates the range limit status.

myDeltaLimit - attribute that points to the delta limits associated with the parameter.

3-34 305-CD-044-001

myDeltaStatus - attribute that indicates the delta limits check status.

UpdateValue - operation that will update that parameter from the raw values.

FtTlDivide - this class represents the arithmetic division operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and divide the first
by the second.

myQuality- this member variable holds the quality information for an operator.

FtTlEdu - class that represents a received EDU. It reads the EDU data from EDOS or DMS inter-
face, and forwards the EDU to be decommed.

myPacketSeqNo - attribute that indicates the sequence number of the packet.

myPacketApid - attribute that indicates the packet identification.

myExpectedPacketApid - attribute that indicates the expected application identification
of the packet.

myPacketLength - attribute that indicates the length in bytes of the packet.

myExpectedPacketLength - attribute that indicates the expected packet length.

myPacketScTime - attribute that indicates the spacecraft time of the packet.

myHeaderFlag - attribute that indicates if archiving is on.

myArchiveFlag - attribute that indicates if the Edu header in present.

GetCriticalInfo - operation that gets the packer sequence number, the APID, and the
packet spacecraft time.

Verify - operation that checks that the critical information was received.

ReceiveData - operation that gets the Edu.

SetArchiveFlag - operation that sets the archive flag.

GetArchiveFlag - operation that returns the archive flag.

SetHeaderFlag - operation that sets the header flag.

GetHeaderFlag - operation that returns the header flag.

GrabPacketDataBits - operation that gets the data bits and sets the data pointer to the
location of the source data.

FtTlElement - this is an abstract base class that represents all of the possible pieces of an equation.

CheckQuality - this member function will check the quality of an element.

Operate - this member function will perform the desired function for the specific type of
element that is instantiated.

Initialize - this member function will initialize anything that will be needed for a specific
element.

myQuality - this member variable is the quality information for this element.

myValue - this member variable is the value of this element.

3-35 305-CD-044-001

FtTlEqual - this class represents the logical equality operator.

CheckQuality - this member function checks the quality of an operator.

Operate - this member function removes two values from a stack and compare them.

Initialize - this member function initializes anything that is needed for an element.

myValue - this member variable holds the value of the element.

myQuality - this member variable holds the quality information for an operator.

FtTlEquation - this class represents the equation that is used to derive a parameter.

IsDue - this member function returns a flag that is used to determine whether it is time to
update the parameter associated with the equation.

IsEnabled - this member function returns a flag that is used to determine whether the
decommutation of the parameter associated with an equation is enabled.

Calculate - this member function calculates the value of the parameter that is associated
with an equation.

GetRate - this member function gets the update interval.

SetNextUpdate - this member function sets the next update time for an equation.

SetUpdateRate - this member function sets the update rate for an equation in seconds.

SetEnabledFlag - this member function sets the Enabled flag for an equation.

myEnabledFlag - this member variable flags whether an equation is enabled or not.

myRawValue - this member variable is the raw value of the derived parameter.

myQuality - this member variable contains the quality information for the equation.

myUpdateInterval - this member variable is the rate of update for the derived parameter.

myNextUpdateTime - this member variable is used to determine when to update a derived
parameter.

FtTlEuConversion - abstract class that represents an EU conversion.

mySelectedFlag - attribute indicating whether the user has selected the conversion. This
attribute provides a mechanism for the user to lock the conversion. The selected flag
overrides any context dependence conversion switching.

myContextSwitch - attribute that, if present, provides an association between the
conversion and a context switch. Context switching is based upon the value of a discrete
parameter.

myNewCoefficients - attribute that holds the user specified coefficients.

myEuValue - attribute that holds the current EU converted value of the conversion.

myStatus - attribute that indicates the status of the EU conversion process.

Convert - operation that converts the raw value to an EU value.

AjustCurrentCoefficients - operation that initiates the adjustment of coefficients.

SetCoefficient - operation that allows the setting of coefficients.

3-36 305-CD-044-001

FindConversion - operation that finds the conversion using the context dependent
parameters.

FtTlExponentialConversion - class that represents a type of EU conversion. The exponential
conversion uses the following equation:

y = C0 + C1 e (c2x) .

myCoefficients - attribute that contains the list of coefficients used in the calculation of the
EU.

myNewCoefficients - attribute that contains the list of coefficients specified by the user.

Convert - operation that converts the raw value to an EU.

AdjustCurrentCoefficients - operation that adjusts the current coefficients.

SetCoefficient - operation that sets the coefficients.

FtTlGreater - this class represents the logical greater than operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and compare them.

myValue - this member variable holds the value of the element.

myQuality - this member variable holds the quality information for an operator.

FtTlGreaterOrEqual - this class represents the logical greater than or equal to operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and compare them.

myQuality - this member variable holds the quality information for an operator.

FtTlLess - this class represents the less than operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and compare them.

myQuality - this member variable holds the quality information for an operator.

FtTlLessOrEqual - this class represents the logical less than or equal to operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and compare them.

myQuality - this member variable holds the quality information for an operator.

FtTlLimitSet - class that represents the set of limits available to an associated analog parameter.

myCurrentGroup - attribute indicating which limit boundary group is currently selected.

mySenseInterval - attribute that represents the current out-of-limits sense interval. This
attribute determines how often an event message is generated for a continuous out-of-limit
condition.

mySenseCount - attribute that indicates how many times the parameter has consecutively
remained out of limits. This attribute will be compare against the sense interval.

myBoundaryGroups - attribute that contains a list of available limit boundary groups.

3-37 305-CD-044-001

myMaxGroups - attributes that indicates the maximum number of boundary groups.

myStatus - attributes that indicates the current processing status.

Check - operation that initiates delta and boundary limit checking.

GetLimits - operation that returns a set of limits.

SetLimits - operation that sets the limits for a parameter.

AdjustBoundaryGroup - operation that initiates the adjustment of the limits.

SelectBoundaryGroup - operation that allows the user to select a boundary group.

FtTlLimits - class represents the range limit high and low values.

myLoValue- attribute that holds the low limit value.

myHiValue - attribute that holds the high limit value.

myValue - attribute that holds the value that is being limit checked.

myStatus - attribute that holds the type of limit violation that occurred.

myLimitType - attribute that holds the limit type of the class.

Check - operation that checks for limit violations.

SetHiValue- operation that sets the high value for the limits.

SetLoValue - operation that sets the low value for the limits.

AdjustBoundaryGroup - operation that allows the user to adjust the limit range.

FtTlLineConversion - class that represents a type of EU conversion. The line conversion uses
linear interpolation of the raw analog parameter value. Up to fifteen contiguous line segments of
increasing value may be associated with the conversion.

myLineSegments - attribute that contains the list of line segments used in the calculation
of the EU.

myCurrentLineSegment - attribute that indicates the line segment to use for the EU
conversion.

Convert - operation that initiates the raw to line segment EU conversion.

FtTlLineSegment - class that represents a line segment used during the line segment interpolation
process.

myX1 - attribute holding the x coordinate of the start point of the line segment.

myY1 - attribute holding the y coordinate of the start point of the line segment.

myX2 - attribute holding the x coordinate of the end point of the line segment.

myY2 - attribute holding the y coordinate of the end point of the lint segment.

myActiveFlag - derived attribute indicating whether the slope and intercept for the line
segment have been previously calculated.

myCurrentSegmentFlag - attribute that indicates the line segment in use for the EU
conversion.

mySlope - attribute representing the calculated slope of the line segment.

3-38 305-CD-044-001

myIntercept - attribute representing the calculated y-intercept of the line segment.

myDecodedValue - attribute representing the decoded value to be EU converted.

ComputeSlopeIntercept - operation that calculates the slope and y-intercept of the line
segment if they have not been previously calculated.

Convert - operation that calculates the raw to line segment EU conversion.

Check - operation that determines the correct line segment to use.

FtTlMultiply - this class represents the arithmetic multiplication operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and multiply them
together.

myQuality - this member variable holds the quality information for an operator.

FtTlNegate - this class represents the arithmetic unary minus operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and apply a unary minus.

myQuality - this member variable holds the quality information for an operator.

FtTlNot - this class represents the logical NOT operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and apply a NOT.

myQuality - this member variable holds the quality information for an operator.

FtTlNotEqual - this class represents the logical inequality operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and compare them.

myQuality - this member variable holds the quality information for an operator.

FtlOperator - this class is an abstract class that represents operators used in FtTlEquations for de-
rived telemetry.

CheckQuality - this member function will check the quality.

Operate - this member function will remove a value(s) from a stack and operate on them.

myQuality - this member variable holds the quality information for an operator.

FtTlOr - this class represents the logical OR operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and OR them.

myQuality - this member variable holds the quality information for an operator.

FtTlPacketMap - class that represents the packet maps for decom. It begins the processing of pa-
rameter maps.

myParamMap - attribute that is an array of parameter maps.

myNumPacketParams - attribute that indicates the number of parameters in the packet.

3-39 305-CD-044-001

myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myParameterTable - attribute that represents the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates decommutation for the parameter maps.

FtTlParameter - class that maintains the parameter values for a single parameter.

myDecomFlag - attribute that indicates whether this parameter should be decommutated.

myActiveFlag - attribute that indicates whether the parameter is currently active and being
updated. For sampled telemetry, this indicates that the parameter is being decommutated.
For derived telemetry, this indicates that the parameter is being calculated. In the event of
a loss of data or a data dropout, this flag is set to reflect a static condition.

myStaticToggle - attribute that indicates if the parameter is static.

myNumberofValues - attribute that indicates the number of values for the parameter.

ValuesServedFlag - attribute that indicates the amount of values that have been served for
the parameter.

GetActiveFlag - operation that retrieves the active flag.

SetActiveFlag - operation that sets the active flag.

GetDecomFlag - operation that retrieves the decommutation flag.

SeDecomFlag - operation that sets the decommutation flag.

GetLimits - operation that retrieves the limit set.

SetLimits - operation that sets the range limits for this parameter.

SetDeltaLimit - operation that sets the delta limits for this parameter.

SetQuality - operation that sets the quality flag.

SetDecodeValue - operation that sets the decoded value.

GetDecomFlag - operation the retrieves the decommutation flag.

SetDecomFlag - operation that sets the decommutation flag.

SetValuesServedFlag - operation that sets the values served flag.

SelectDecom - operation that turns decommutation on or off for a parameter.

ConvertValue - operation that gets the converted value.

Update - operation that initiates parameter processing (i.e., limit checking, EU
conversion).

UpdateValue - operation that performs inherited class specific updates.

FtTlParameterContextSwitch - class that represents a switch that is used to issue an event mes-
sage that the quality of the parameter is bad or the parameter has been marked static.

myStatus - attribute that indicates the current processing status.

Compare- operation that checks the quality of the parameter.

FtTlParameterTable - class that maintains the values for all of the parameters.

3-40 305-CD-044-001

myParameter - attribute that is the table of all of the parameters.

myStatus - attribute that indicates the static status of the parameter.

Update - operation that updates the parameter table element indicated by the pid.

StaticCheck - operation that performs a static check on all of the parameters in the table.

GetActiveFlag - operation that retrieves the active flag.

SetQuality - operation that sets the quality of the parameter.

GetQuality - operation that retrieves the quality of the parameter.

GetConvertedValue - operation that retrieves the converted value of the parameter.

GetCurrentValue - operation that retrieves the current value of the context parameter.

GetLimits - operation that retrieves the limit set.

GetDecodedValue - operation that retrieves the decoded value of the parameter.

GetRawValue - operation that retrieves the raw value of the parameter.

ReadDatabase - operation that reads the parameter object stored in the database.

WriteDatabase - operation that writes the current parameter into the configuration
database.

FtTlParameterValues - class that is used to maintain all values that are unique to a single instance
of parameter.

myRawValue - attribute that represents the raw bit value received.

myPid - attribute that represents the parameter identification.

myDecodedValue - attribute that contains the decoded value.

myConvertedValue - attribute that contains the converted value.

myMnemonic - attribute that contains the mnemonic.

myFirstBitOffset - attribute that contains the first bit offset used to calculate the time tag.

myStatus - attribute that contains the status.

myQuality - attribute that contains the quality.

mySubSystemId - attribute that contains the subsystem identification.

GetRawValue - operation that retrieves the raw value of the parameter.

GetDecodedValue - operation that retrieves the decoded value.

GetConvertedValue - operation that retrieves the converted value.

GetSubsystemId - operation that retrieves the subsystem identification.

GetQuality - operation that retrieves the quality.

FtTlParamMap - class that represent the parameter maps.

myEdu - attribute that represents the Edu that will be sent to the decommutation process.

myParameterTable - attribute that represents the parameter table that will be sent to the
decommutation process.

Decom - operation that initiates the decommutation process.

3-41 305-CD-044-001

FtTlParamOperand - this class represents parameter values used in FtTlEquations for derived te-
lemetry.

CheckQuality - this member function will check the quality.

Operate - this member function will place a parameter value on the stack.

Initialize - this member function will initialize a link to the Parameter Table.

myValue - this member variable holds the value of the parameter.

myQuality - this member variable holds the quality information for the parameter.

myPid - this member variable is the PID for the associated parameter.

myParameterTablePtr - this member variable is a pointer to the parameter table.

FtTlPolyConversion - class that represents a type of EU conversion. The polynomial conversion
uses the following equation:

y = C0 + C1x + C2x2 + ... C7x7.

myCoefficients - attribute that contains the list of coefficients used in the calculation of the
EU.

myNewCoefficients - attribute that contains the list of coefficients specified by the user.

Convert - operation that converts the raw value to an EU value.

AdjustCurrentCoefficients - operation that adjusts the current coefficients.

SetCoefficient - operation that allows setting of the coefficients.

FtTlRawMap - class that represents the map for decom. It initiates getting the raw value and up-
dating the parameter table.

myPid - attribute that represents the parameter ID.

myRawValue - attribute that contains the raw value.

myTargetParameter - attribute that is being filled by the decommutation process.

myComponentMap - attribute that is an array of component maps.

myFirstBit - attribute that is the first bit.

myFirstBitOffset - attribute that is the first bit's offset.

GetPid - operation that obtains the parameter ID.

Decom - operation that gets the raw value.

FtTlSin - this class represents the arithmetic sine function.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the sine of
that value.

myQuality - this member variable holds the quality information for an operator.

FtTlStatus - .this class represents all of the parameter's statuses.

myStatus - this member variable holds the current status.

myStatusType - this member variable is the current type of status.

3-42 305-CD-044-001

Set - this operation sets the status types to send to the parameter server.

Get - this operation gets the requested status value.

FtTlSubtract - this class represents the arithmetic subtraction operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove two values from a stack and subtract them.

myQuality - this member variable holds the quality information for an operator.

FtTlTan - this class represents the arithmetic tangent function.

myQuality - this member variable holds the quality information for an operator.

CheckQuality - this member function will check the quality of an operator.

Operate - this member function will remove a value from a stack and evaluate the tangent
of that value.

FtTlTelemetryController - class that is responsible for controlling an instance of the telemetry
subsystem process. This class receives and processes configuration adjustment requests.

myParameterTable - attribute that represents the parameters and their values.

myDecom - attribute that indicates an instance of decom.

myDerivedTelemetryMap - attribute that represents a derived telemetry map.

myConfigRequest - attribute that represents a configuration adjustment request.

mySCStateCheck - attribute that represents the state check request.

ProcessRequest - operation that processes a configuration request.

Initialize - operation that initializes attributes and interfaces.

Run - operation that runs the decommutation controller process.

Shutdown - operation that shuts down the decommutation controller process.

3.3 Memory Dump
The Memory Dump Subsystem provides the capability to collect and store the contents of down-
linked spacecraft or instrument computer memory dumps. It will detect and notify the user at the
start and completion of a computer memory dump. All memory dump data will be stored in a file.

3.3.1 Memory Dump Context

The Memory Dump Subsystem context diagram shown in Figure 3.3-1 depicts the data flows be-
tween the FOS Memory Dump Subsystem and external ground system as well as EOC internal
components. Descriptions of the data flows are summarized for each component:

EDOS: The EDOS forwards telemetry to Memory Dump Subsystem via EDOS Data
Units(EDUs). Each EDU contains a reconstructed CCSDS telemetry packet, quality
information, and time stamp. The packetized message transports spacecraft or instrument
computer memory dumps.

3-43
305-C

D
-044-001

Memory
Dump

EDOS

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem

FOS
Command
Subsystem

This System

Config Info
User Control Directives

EDUs for Archive
Events

Memory Dump File

EDUs

Directive Status

StartDumpMessage

Figure 3.3-1. Memory Dump Context Diagram

3-44 305-CD-044-001

FOS Data Management Subsystem: During a memory dump session, all EDUs received
by the MemoryDumpSubsystem (if archiving is enabled) and memory dump events are
forwarded to the Data Management Subsystem for storage and processing. At the end of a
memory dump session, the file containing the memory dump EDUs is forwarded to the
Data Management Subsystem for storage
FOS Resource Management Subsystem: The Resource Management Subsystem supplies
configuration information required by Memory Dump Subsystem for memory dump
processing. This data includes EDOS and Command Management Subsystem
communication channels, and user configuration requests.
FOS Command Management Subsystem: The Command Management Subsystem
supplies the StartDumpMessage to the Memory Dump Subsystem to initialize a memory
dump session. The StartDumpMessage includes information on the source and the size of
the memory dump.

3.3.2 Memory Dump Interfaces

3.3.3 Memory Dump Object Model

The Memory Dump Object Model is depicted in Figure 3.3-2. The following section describes the
objects in the Memory Dump Object Model.

FtTlDumpController class is the controller of the memory dump process. This class configures
the process and controls the different memory dump states.

FoGnTlmSourceIF class is the telemetry source interface. This class receives the data and per-
forms the communications layer interface.

FtTlEdu class obtains and verifies the critical information from the EDU. If archiving is enabled,
this class sends the EDUs to be archived by DMS.

Table 3.3-1 Memory Dump Interfaces
Interface
Service

Interface Class Interface Class
Description

Service Provider Service
User

Frequency

Memory Dump
Configuration
Proxy

FtTlDumpConfig Provides for
configuring and
controlling of a memory
dump process

TLM RMS At
initialization
of a
telemetry
process and
upon user
directive

EDOS interface FtTlEdu Provides EDUs for
memory dump

TLM TLM Every EDU

Telemetry
Archiver
interface

FdArTlmArchProxy Archives EDUs DMS TLM Every EDU

Memory Dump
Start Message
interface

FoGnTlmProxy Provides the
StartDumpMessage

CMD TLM At the start
of each
memory
dump
session.

3-45
305-C

D
-044-001

FoGnTlmSourceIf

FtTlEdu

FtTlDumpDataUnit

FtTlDumpController

FoDsFile

FoGnTlmDumpProxy

FdEvEventLogger

[proxy class]

[proxy class]

FtTlDumpConfig

FdArTlmArchProxy

IfAbsolute()
GetTableId()
GetSegOffset()
GetWordLength()
GetAddress()
GetMsg()
Init()

myPath
myFilename

Close(fileptr)
Open(file,path,action)
Read(fileptr,recptr,size)
Write(fileptr,recptr,size)

myPacketSeqNo
myPacketApid
myExpectedPacketApid
myPacketLength
myExpectedPacketLength
myPacketScTime
myArchiveFlag
myHeaderFlag

GetCriticalInfo()
ReceiveData()
Verify()
GrabPacketDataBits(offset, length)
SetArchiveFlag(inArchiveFlag)
GetArchiveFlag()
SetHeaderFlag(inHeaderFlag)
GetHeaderFlag()

myBufferSize
myStream
myTimeoutInterval
myListenPort
myBufferPtr
myDmsEventPtr
*myBuffer

ReceiveData()
GrabBits(offset, length)

send()
receive()

GenEvent(myEventID, mySpacecraftId, mySubsystem, myParamList, myLineNumber,
myFile)

myRequestType
myFilename
myMode
myPid
mySubsystemId
myDropout
myDerivedUpdateRate
myPort
myLimitGroup
myRangeLimit[]
myEUType
myEUConversion
myEUCoefficients[]

Receive()
GetRequestType()
GetFilename()
GetMode()
GetPid()
GetSubsystemId()
GetDropout()
GetDerivedUpdateRate()
GetPort()
GetLimitGroup()
GetDirection()
GetType()
GetValue()
GetEUType()
GetEUConversion()
GetEUCoefficients()

myFoDsFile
myDumpDataUnit
myConfigRequest
myConfigRequestList[]
myTlmDumpProxy

Initialize(argc, **argv)
Run()
DumpMode(&StartDumpMessage)
Shutdown()

myConfigRequest

SendConfigRequest(&ConfigRequest)
SendConfigRequest()
Configure(*SourceGroupListenAddress, ExpectedEduLength, ExpectedPacketApid)
Shutdown()

myFoDsFile

IsDump()
Store()
GetNumberDumpWords()
~FtTlDumpDataUnit()

FtTlConfigRequest

{shared - FDM with all S/S}

 + : EcTBoolean
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTBoolean
 + : EcTBoolean

 - : RWCString
 - : RWCString

 + : EctInt
 + : fileptr
 + : EctInt
 + : EctInt

 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTChar*
 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTInt
 + : EctInt
 + : EcTInt
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTInt

± : EcTInt
 ± : istream
 ± : EcTInt
 ± : EcTInt
 ± : EcTChar*
 ± : EcTString*
 ± : EcTChar

 + : EcTInt
 + : EcTInt

 + : int
 + : int

 + : EcTBoolean

 - : EcTEnum
 - : EcTString
 - : EcTEnum
 - : EcTEnum
 - : EcTEnum
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : struct
 - : EcTInt
 - : EcTInt
 - : EcTFloat

 + : EcTVoid
 + : EcTEnum
 + : EcTString
 + : EcTEnum
 + : EcTEnum
 + : EcTEnum
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTEnum
 + : EcTInt
 + : <type>
 + : EcTInt
 + : EcTInt
 + : EcTFloat*

 - : FoDsFile
 - : FtTlDumpDataUnit
 - : FtTlConfigRequest
 - : FtTlConfigrequest
 - : FoGnTlmDumpProxy

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : FtTlConfigRequest

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : FoDsFile

 + : EcTInt
 + : EcTVoid
 + : EcTInt
 + : virtual

Controls

Sends Events To

Sends
Events To

Writes To

Controls

Get Start Messages From

Archives Edu's
to

Figure 3.3-2. Memory Dump Object Model

3-46 305-CD-044-001

FtTlDumpDataUnit inherits from the FtTlEdu class which inherits from the FoGnTlmSourceIF
class. This class provides dump specific extraction and verification capabilities.

FtTlDumpConfig is the proxy to allow RMS to control the memory dump process.

FtTlConfigRequest is the link class used to carry the information from the FtTlDumpConfig
proxy to the memory dump process.

FoGnTlmDumpProxy is the proxy provided by CMD which gets the StartDumpMessage to the
dump process. This message initiates a dump session.

FdEvEventLogger is the proxy provided by DMS which handles event messages.

FdArTlmProxy is the proxy provided by DMS which accepts and archives EDUs.

FoDsFile is the utility provided by DMS which performs file I/O and manipulations.

3.3.4 Memory Dump Dynamic Model

The Memory Dump Subsystem is dynamically modeled in the state transition diagram of FtTl-
DumpController (Figure 3.3-3). The following scenarios and event trace diagrams detail the tran-
sition between the two main states (i.e. the Awaiting Message State and the Dump Mode State).
Combined, these sequence of events describe how a dump session captures a memory dump. The
following scenarios are described in this section:

Awaiting Message State Scenario

Dump Mode State Scenario

3.3.4.1 Awaiting Message State Scenario

3.3.4.1.1 Awaiting Message State Scenario Abstract

The purpose of "Awaiting Message State Scenario" is to initialize a memory dump session once it
gets the message to start. The event trace for this scenario can be found in Figure 3.3-4.

3.3.4.1.2 Awaiting Message State Summary Information

Interfaces:

CMD

Stimulus:

FtTlDumpController receives a StartDumpMessage from the CMD interface.

Desired Response:

The memory dump process initiates the dump session and goes into Dump Mode State.

Pre-Conditions:

The memory dump process has been initialized and is in the Awaiting Message State.

Post-Conditions:

The memory dump process is in Dump Mode and is ready to receive additional EDUs.

3-47
305-C

D
-044-001

Memory
Dump

EDOS

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem

FOS
Command
Subsystem

This System

Config Info
User Control Directives

EDUs for Archive
Events

Memory Dump File

EDUs

Directive Status

StartDumpMessage

Figure 3.3-3. Memory Dump State Transition Diagram

3-48
305-C

D
-044-001

FoGnTlmDumpProxy FtTlDumpController FtTlConfigRequest FoDsFile

notify

get request

request received

open dump file

dump file opened

write dump message to dump file

dump message written

get dump word count

word count received

get filename info

filename received

Figure 3.3-4. Awaiting Message State Event Trace

3-49 305-CD-044-001

3.3.4.1.3 Awaiting Message State Scenario Description

FoGnTlmDumpProxy initiates the memory dump session by notifying FtTlDumpController that
a StartDumpMessage has arrived. FtTlDumpController calls FtTlConfigRequest to receive the re-
quest. FtTlDumpController calls FtTlConfigRequest to get information required to generate the
dump storage file name. FtTlDumpController uses the information in the StartDumpMessage to
generate a DumpFileName and then calls FoDsFile to open that file. FtTlDumpController then
calls FoDsFile to write out the StartDumpMessage to the dump storage file.

FtTlDumpController calls FtTlConfigRequest to get the DumpWordCount and initializes the
DumpWordCount with information from the StartDumpMessage. FtTlDumpController then waits
in Dump Mode for the memory dump EDUs to arrive.

3.3.4.2 Dump Mode State Scenario

3.3.4.2.1 Dump Mode State Scenario Abstract

The purpose of "Dump Mode State Session Scenario" is to perform the actual memory dump and
to detect and terminate the end of a memory dump session. This scenario starts in Dump Mode
State and accepts EDUs and determines if they are memory dump EDUs. All memory dump EDUs
are written out to the dump storage file. Once all memory dump EDUs have been received (as in-
dicated by the DumpWordCount) an event message is generated and the memory dump session is
completed. The event trace for this scenario can be found in Figure 3.3-5.

3.3.4.2.2 Dump Mode State Summary Information

Interfaces:

DMS

EDOS

Stimulus:

Memory dump EDUs arrive from EDOS.

Desired Response:

All memory dump EDUs are written out to the dump storage file.

Pre-Conditions:

The memory dump process is in Dump Mode and is ready to receive EDUs.

Post-Conditions:

All memory dump EDUs for this memory dump session have been received.

3.3.4.2.3 Dump Mode State Scenario Description

When an EDU arrives, FtTlDumpController calls FtTlDumpDataUnit to receive the EDU. FtTl-
DumpController then calls FtTlDumpDataUnit to determine if the EDU is a memory dump EDU.
When this is a memory dump EDU and if it is the first memory dump EDU detected in this dump
session FtTlDumpController calls FdEvEventLogger to send a "Beginning Dump" event message.
For all memory dump EDUs FtTlDumpController calls FtTlDumpDataUnit to verify the EDU.
When the EDU passes verification FtTlDumpController calls FtTlDumpDataUnit to store the
memory dump EDU. FtTlDumpDataUnit calls FoDsFile to store the memory dump EDU. FtTl-
DumpController decrements the DumpWordCount by the number

3-50
305-C

D
-044-001

FtTlDumpController FtTlDumpDataUnit FoDsFile FdEvEventLogger

notify that EDU
is available

notified

determine EDU type

EDU type determined

send beginning dump event message
(for first Memory Dump EDU only)

message sent

verify EDU

store EDU

EDU stored

store EDU

EDU stored

EDU verified

send successful dump event message

message sent

for all
EDUs
until

word count
is zero

Figure 3.3-5. Dump Mode State Event Trace

3-51 305-CD-044-001

of words dumped in the memory dump EDU. FtTlDumpController continues in Dump Mode until
the DumpWordCount goes to zero. When the DumpWordCount is zero FtTlDumpController calls
FdEvEventLogger to send an "Successful Dump Completed, Total words dumped = XXX" Event
Message.

3.3.5 Memory Dump Data Dictionary

FdArTlmArchProxy - class that is a proxy from DMS that archives EDUs.

FdEvEventLogger - class that is a proxy from DMS for logging events.

FoDsFile - class that is the proxy provided by DMS which performs file I/O and manipulations.

FoGnTlmDumpProxy - class that is the proxy provided by CMD which gets the StartDumpMes-
sage to the dump process.

FoGnTlmSourceIF - class that initiates initialization of connections through a port. It receives a
data stream, checks for errors and writes the data to a buffer.

myBuffer - attribute that stores the data.

myBufferPtr - attribute that points to the location of the data in the data buffer.

myBufferSize - attribute that indicates the size of the buffer.

myDmsEventPtr - attribute that points to an event message when an error has occurred.

myListenPort - attribute that represents the listening port number.

myStream - attribute that represents the data stream.

myTimeoutInterval - attribute that represents the time interval between data.

GrabBits - operation that extracts bits from the buffer.

ReceiveData - operation that fills the buffer with data.

FtTlConfigRequest - class that corresponds to configuration update requests.

myDerivedUpdateRate - attribute that contains the rate of updating derived parameters.

myDropout - attribute that contains the dropout interval.

myEUCoefficients - attribute that contains the EU coefficients.

myEUConversion - attribute that contains the EU conversion indicator.

myEUType - attribute that contains the EU conversion type.

myFileName - attribute that contains the filename used for a WriteDatabase or
ReadDatabase request.

myLimitGroup - attribute that contains the limit group to set.

myMode - attribute that contains the on or off mode used for archiving or selective decom.

myPid - attribute that contains the parameter identification.

myPort - attribute that contains the input telemetry port.

myRangeLimit - attribute that contains the range limit information.

myRequestType - attribute that contains the type of request.

mySubsystemId - attribute that contains the subsystem identification.

3-52 305-CD-044-001

GetDerivedUpdateRate - operation that returns the derived update rate.

GetDirection - operation that returns the range limit direction.

GetDropout - operation that returns the dropout interval.

GetEUCoefficients - operation that returns the EU coefficients.

GetEUConversion - operation that returns the EU conversion.

GetEUType - operation that returns the EU type.

GetFileName - operation that returns the filename.

GetLimitGroup - operation that returns the limit group.

GetMode - operation that returns the mode.

GetPid - operation that returns the parameter identification.

GetPort - operation that returns the telemetry port.

GetRequestType - operation that returns the request type.

GetSubsystemId - operation that returns the subsystem identification.

GetType - operation that returns the range limit type.

GetValue - operation that returns the range limit value.

Receive - operation that receives the data from an external interface.

FtTlDumpConfig - This class acts as the proxy to RMS to communicate with a TLM decom pro-
cess.

SendConfigRequest - This operation sends a configuration request to telemetry.

Configure - This operation configures the memory dump process with setup information.

Shutdown - This operation sends a shutdown message to the memory dump process.

myConfigRequest - This attribute represents the memory dump configuration request.

FtTlDumpController - This class is responsible for controlling an instance of the Memory Dump-
ing process. The Dump Controller checks for inputs to the Dump process and then controls the
state of the process.

Initialize - This operation sets up the initial state of the memory dump process.

Run - This routine controls the different states of the memory dump process.

DumpMode - This routine is called when the memory dump process is entering Dump
Mode. It will detect the start of a memory dump, do the dump, and respond to Dump
Messages.

Shutdown - This routine does any required cleanup before the memory dump process exits.

myFoDsFile - This attribute is the file object which we are writing the dump Edu's to.

myDumpDataUnit - This attribute is the dump data unit object which contains the dump
Edu's.

myConfigRequest - This attribute represents the configuration request .

myConfigRequestList - This attribute represents the configuration request list.

3-53 305-CD-044-001

myTlmDumpProxy - This attribute is the proxy to CMD which supplies the Start Dump
Message.

FtTlDumpDataUnit - This class is used to deal with Memory Dump Data

IsDump - This operation returns true if the current EDU is a memory dump EDU.

Store - This operation stores the current EDU into a file.

GetNumberDumpWords - This operation returns the number of memory dump words in
the current EDU.

myFoDsFile - This attribute is the file object which we are writing the dump Edu's to.

FtTlEdu - class that represents a received EDU. It reads the EDU data from EDOS or DMS inter-
face, and forwards the EDU to be decommed.

myPacketSeqNo - attribute that indicates the sequence number of the packet.

myPacketApid - attribute that indicates the packet identification.

myExpectedPacketApid - attribute that indicates the expected application identification
of the packet.

myPacketLength - attribute that indicates the length in bytes of the packet.

myExpectedPacketLength - attribute that indicates the expected packet length.

myPacketScTime - attribute that indicates the spacecraft time of the packet.

myHeaderFlag - attribute that indicates if archiving is on.

myArchiveFlag - attribute that indicates if the Edu header in present.

GetCriticalInfo - operation that gets the packer sequence number, the APID, and the
packet spacecraft time.

Verify - operation that checks that the critical information was received.

ReceiveData - operation that gets the Edu.

SetArchiveFlag - operation that sets the archive flag.

GetArchiveFlag - operation that returns the archive flag.

SetHeaderFlag - operation that sets the header flag.

GetHeaderFlag - operation that returns the header flag.

GrabPacketDataBits - operation that gets the data bits and sets the data pointer to the
location of the source data.

3.4 Spacecraft State Check
The Spacecraft StateCheck assists in back-orbit command verification. It allows the EOC to base-
line the current states of the spacecraft, monitor and compare the spacecraft's state with a baseline,
and compare the spacecraft's state with it's expected state.

3.4.1 Spacecraft State Check Context

RMS: The RMS subsystem provides the StateCheck process with Command Line Param-
eters that gives StateCheck the Parameter Server identifier (Fig 3.4-1). The RMS interface

3-54
305-C

D
-044-001

StateCheck

Name
Server

CMS

DMS

FUI

Parameter
Server

RMS

This System

address
request of CMS

expected state
request

event
messages

SCRequest

address

expected state

register /
request parameters

parameters

Parameter
Server

address

Figure 3.4-1. Spacecraft State Check Context Diagram

3-55 305-CD-044-001

is limited to statecheck process creation and therefore will not be seen in the rest of this sub-
system.

DMS: The DMS subsystem receives event messages from the StateCheck process when
a miscompare is encountered. It also receives a summary event message upon completion
of a state check.

FUI: The FUI subsystem sends a request to the StateCheck process with a state check ar-
gument. This argument determines if the request is to load, baseline, or perform a state
check. A load argument will cause the StateCheck process to get an expected value table
from CMS. A baseline causes the StateCheck process to replace the values in the expected
value table with current values retrieved from the Parameter Server. A perform state check
argument causes the StateCheck process to compare the values in the expected value table
with current values retrieved from the Parameter Server.

Parameter Server: The Parameter Server subsystem provides the StateCheck process with
current downlink telemetry values from the space craft. The StateCheck process registers
with the Server and requests parameters when needed.

NameServer: The Name Server provides the StateCheck process with the network address
of CMS.

CMS: The CMS subsystem provides the StateCheck process with an expected value table
that will be used during a perform state check argument.

3.4.2 Spacecraft State Check Interfaces

Table 3.4-1. Spacecraft State Check Interfaces (1 of 2)

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Load StateCheckRequest Loads the expected state
values onto a table.

TLM FUI Minimum of
once per pass

Baseline StateCheckRequest Replaces the expected
state table with current
downlink tlm.

TLM FUI Typically once
per pass.

StateCheck StateCheckRequest Compares current
downlink tlm with the
expected state.

TLM FUI Minimum of
once per pass.

FetchTable ExpectedStateTable provides the state check
process with a table of
expected values.

CMS TLM When a state
check is called.

Event
Generator

FdEvEvent Logger generates events to DMS DMS TLM When an event
message is
sent.

Receive Buffer PsClientIF Makes a buffer of
requested parameters.

Parameter Server TLM When state
check &
baseline
requests are
made.

3-56 305-CD-044-001

3.4.3 Spacecraft State Check Object Model

FtTlStateCheckController class is the controller of the process. It establishes connections with
FUI, CMS and Parameter Server when the StateCheck process is initialized (see Fig 3.4-2). It gets
a request from FtTlStateCheckRequest and determines if the request is a load, baseline, or a per-
form statecheck, then performs the request.

FtTlStateCheckRequest is a class that acts as a proxy to FUI. It gets a request from FUI and can
return the request type and argument.

FtTlSCStateCheck will load expected values, baseline or perform a statecheck against expected
values. A load will cause FtTlSCStateCheck to get an expected state value table from CMS. A
baseline causes FtTlSCStateCheck to replace the values in the expected value table with current
values retrieved from the Parameter Server. A perform state check argument causes the FtTlSC-
StateCheck to compare the values in the expected value table with current values retrieved from
the Parameter Server. The compare is done by calling FoTlExpectedState with the retrieved val-
ues.

FtTlStateCheckProxy is a proxy between the StateCheck process and FUI. It relays the command
from FUI to the StateCheck process.

FoTlExpectedValue is a class that holds the expected value and high & low values obtained from
CMS.

FoTlExpectedState is a class that contains the expected value table. It also performs the compare
and replacement of expected values with current values.

FoPsParameters is a class that gets current parameters and stores them in the FoPsClientBuffer.

FoPsClientIF is an interface between the StateCheck and the Parameter Server.

FoPsClientBuffer is a buffer that holds the requested parameters that were requested from the pa-
rameter server.

FmMsExpectedStateTable is a proxy between CMS and the Statecheck process. It provides to
FtTlSCStateCheck an expected value table which it (FtTlSCStateCheck) requested.

FdEvEventLogger is a class that is a proxy between the Statecheck process and DMS. It receives
the event messages generated during the statecheck and relays them to their appropriate destina-
tions.

Register Client PsClientIF Register a client as
continuous

Parameter Server TLM When a receive
buffer request
is made to
parameter
server.

NameServer Directory_Name_Se
rvice

Return the network
address of requested
processes

NameServer TLM When the state
check process
is initialized.

Table 3.4-1. Spacecraft State Check Interfaces (2 of 2)
Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

3-57
305-C

D
-044-001

FtTlSCStateCheck

FtTlStateCheckController

FdEvEventLogger

GenEvent(RWCString* msg)

FoTlExpectedValue

FtTlStateCheckRequest

FmMsExpectedStateTable
FoPsClientIF

FoTlExpectedState
FoPsClientBuffer

FoPsParameters

mySCStateCheck
myStateCheckRequest

Initialize()
Run()
Shutdown()

myHighValue
myLowValue
myPID

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

mySize

AddParameter(PsRWModelParameter)

myRequestArgument
myRequestType

GetRequest()
GetRequestType()
GetRequestArgument()

myExpectedStateTable
myPidList
myPsClientIF
myExpectedState

Load(StateCheckArgument)
Baseline()
StateCheck()

SCStateCheckProxy

myTime
myFilename

Load(StateCheckArgument)
Baseline()
StateCheck()

[StateCheck proxy (for FUI)]

[PsServer proxy][CMS proxy]

DMS proxy

CreateConnection()
DestroyConnection()
FetchTable()
Receive()
Send(const FoMsTableRequest&)

myCEVTable
myData
myTime

Compare(const FoPsClientBuffer&)
GetPids()
Replace(const FoPsClientBuffer&)
UpdateTable(const RWDlistCollectables&)

 - : FtTlSCStateCheck
 - : FtTlStateCheckRequest

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : EcTInt
 - : EcTInt

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : EcTInt

 + : EcTInt

 - : EcTChar*
 - : enumerated

 + : EcTVoid
 + : enumerated
 + : EcTChar*

 - : FmMsExpectedStateTable
 - : EcTInt
 - : FoPsClientIF
 - : FoTlExpectedState

 + : Type
 + : EcTVoid
 + : EcTVoid

 - : RWTime
 - : RWString

 + : Type
 + : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : EcTVoid
 + : FoTlExpectedState&
 - : FoTlExpectedState
 - : EcTVoid

 - : FoGsCEVTable*
 - : RWSlistCollectables
 - : RWTime

 + : EcTVoid
 + : RWSlistCollectables
 + : EcTInt
 + : EcTInt

supplies request
info

notifies

register onto/
request parameters

baseline
statecheck

gives expected values to

get parameters from

send event message

Figure 3.4-2. Spacecraft State Check Object Model

3-58 305-CD-044-001

3.4.4 Spacecraft State Check Dynamic Model

The following scenarios are described in this section:

Load Expected State

Initialize State Check

Baseline Expected State

Perform State Check

3.4.4.1 Initialize Spacecraft State Check Scenario

3.4.4.1.1 Initialize Spacecraft State Check Scenario Abstract

This scenario occurs when the StateCheck process is started. It addresses initialization of the Stat-
eCheck interfaces and synchronization. The synchronization is achieved by making sure that at
least one full master cycle has been decommutated before initialization is complete. The initialize
state check event trace is shown in Figure 3.4-3.

3.4.4.1.2Initialize Spacecraft State Check Summary Information

Interfaces:

NameServer

Parameter Server

CMS

FUI

Stimulus:

StateCheck process is started.

Desired Response:

StateCheck process is ready to receive StateCheck commands.

Pre-Conditions:

None.

Post-Conditions:

StateCheck process is ready to receive a load expected value table request.

3.4.4.1.3 Initialize Spacecraft State Check Scenario Description

When a state check process is started, FtTlStateCheckController will initialize its interfaces to Pa-
rameter Server and FUI. FtTlStateCheckController then calls the NameServer to get the address
of the CMS process and initializes its interface to CMS. FtTlStateCheckController then registers
a continuous request for the MasterCycleComplete parameter with FoPsClientIF. FoPsClientIF
will return to FtTlStateCheckController who will in turn call FoPsClientIF to get the requested pa-
rameter. When the requested parameter is returned to FtTlStateCheckController, and its value in-
dicates that the EOC has received a MasterCycle, the request is canceled by calling FoPsClientIF.

3-59
305-C

D
-044-001

FtTlStateCheckController FoPsClientIFFmMsExpectedStateTableFtTlStateCheckRequest

receive buffer

send parameter buffer

register continuous request

request registered

cancel continuous request

request cancelled

initialize interface

initialized

initialize interface

initialized

initialize interface

initialized

Figure 3.4-3. Initialize Spacecraft State Check Event Trace

3-60 305-CD-044-001

3.4.4.2 Load Expected State Table Scenario

3.4.4.2.1 Load Expected State Table Scenario Abstract

This scenario can occur once the StateCheck initialization is complete. This will get a state check
load request from FUI and pass it onto CMS. CMS will return the expected value table that can be
used at a later time. The load expected state table event trace is shown in Figure 3.4-4.

3.4.4.2.2 Load Expected State Table Summary Information

Interfaces:

FUI

CMS

Stimulus:

StateCheck process receives a load request from FUI.

Desired Response:

StateCheck process loads an expected state table.

Pre-Conditions:

StateCheck has completed initialization.

Post-Conditions:

StateCheck process is ready to receive StateCheck commands.

3.4.4.2.3 Load Expected State Table Scenario Description

FtTlStateCheckController detects that a state check request is available and calls FtTlStateCheck-
Request to get the request. FtTlStateCheckController then calls FtTlStateCheckRequest to get the
request type. When the type is to load the expected value table, FtTlStateCheckController calls
FtTlStateCheckRequest to get the argument. FtTlStateCheckController then calls FtTlSCState-
Check with the argument. FtTlSCStateCheck calls FmMsExpectedStateTable with the argument
in order to fetch the expected value table. Once CMS provides the expected state table, FtTlSC-
StateCheck will loop through each entry in the FoTlExpectedState table in order to accumulate all
of the Pids in a single list. This Pid list is used when registering with the parameter server as a one
shot client. FtTlSCStateCheck then returns to FtTlStateCheckController.

3.4.4.3 Baseline Expected State Table Scenario

3.4.4.3.1 Baseline Expected State Table Scenario Abstract

This scenario can occur once the StateCheck initialization is complete and an expected state table
has been loaded. When a state check baseline request is received from FUI, the values in the ex-
pected value table will be replaced by the current values retrieved from the parameter server. The
baseline expected state table event trace is shown in Figure 3.4-5.

3-61
305-C

D
-044-001

FtTlStateCheckController FtTlStateCheckRequest FtTlSCStateCheck FmMsExpectedStateTable FoTlExpectedState

get request

request gotten

get request type

request type

get request argument

request argument

load request

fetch table

expected state table

get pidlist

pidlist

complete

Figure 3.4-4. Load Expected State Table Event Trace

3-62
305-C

D
-044-001

FtTlStateCheckController FtTlStateCheckRequest FtTlSCStateCheck FoPsClientIF FoTlExpectedState

get request

request gotten

get request type

request type

baseline request

receive buffer

parameter buffer

register one-shot request

request registered

replace expected state values

value replaced

baseline complete

Figure 3.4-5. State Check BaseLine Event Trace

3-63 305-CD-044-001

3.4.4.3.2 Baseline Expected State Table Summary Information

Interfaces:

FUI

Parameter Server

Stimulus:

StateCheck process receives a baseline request from FUI.

Desired Response:

StateCheck replaces all values in the expected value table with the current values retrieved
from the parameter server.

Pre-Conditions:

StateCheck has completed initialization and an expected state table has been loaded.

Post-Conditions:

StateCheck process is ready to receive StateCheck commands.

3.4.4.3.3 Baseline Expected State Table Scenario Description

FtTlStateCheckController detects that a state check request is available and calls FtTlStateCheck-
Request to get the request. FtTlStateCheckController then calls FtTlStateCheckRequest to get the
request type. When the type is to baseline the expected value table, FtTlStateCheckController then
calls FtTlSCStateCheck to perform the baseline. FtTlSCStateCheck calls FoPsClientIF to register
a one-shot request using the previously created Pid list. FoPsClientIF will return to FtTlSCState-
Check who will in turn call FoPsClientIF to get the requested parameters. When the requested pa-
rameters are returned, FtTlSCStateCheck calls FoTlExpectedState in order to replace the expected
state values with the ones retrieved from the parameter server. When the values are replaced and
FoTlExpectedState returns, then FtTlSCStateCheck returns to FtTlStateCheckController.

3.4.4.4 Perform Spacecraft State Check Scenario

3.4.4.4.1 Perform Spacecraft State Check Scenario Abstract

This scenario can occur once the StateCheck initialization is complete and an expected state table
has been loaded. When a state check request is received from FUI, the values in the expected value
table will be compared with the current values retrieved from the parameter server. An event mes-
sage will be generated for each miscompare, and a summary event message will be generated at
the end of a StateCheck. The perform state check event trace is shown in Figure 3.4-6.

3.4.4.4.2 Perform Spacecraft State Check Summary Information

Interfaces:

FUI

Parameter Server

Stimulus:

StateCheck process receives a perform state check request from FUI.

3-64
305-C

D
-044-001

FtTlStateCheckController FtTlStateCheckRequest FtTlSCStateCheck FoPsClientIF FoTlExpectedState FdEvEventLogger

get request

request received

get request type

request type

perform statecheck

receive buffer

send parameter buffer

statecheck complete

register one-shot request

request registered

compare values

values compared

send miscompare event message

event messages sent

send summary event message

summary sent

for each
value in

table

Figure 3.4-6. State Check Perform Event Trace

3-65 305-CD-044-001

Desired Response:

StateCheck compares all values in the expected value table with the current values retrieved
from the parameter server.

 Pre-Conditions:

StateCheck has completed initialization and an expected state table has been loaded.

Post-Conditions:

StateCheck process is ready to receive StateCheck commands.

3.4.4.4.3 Perform Spacecraft State Check Scenario Description

FtTlStateCheckController detects that a state check request is available and calls FtTlStateCheck-
Request to get the request. FtTlStateCheckController then calls FtTlStateCheckRequest to get the
request type. When the type is to perform the state check, FtTlStateCheckController then calls
FtTlSCStateCheck to perform the state check. FtTlSCStateCheck calls FoPsClientIF to register a
one-shot request using the previously created Pid list. FoPsClientIF will return to FtTlSCState-
Check who will in turn call FoPsClientIF to get the requested parameters. When the requested pa-
rameters are returned, FtTlSCStateCheck calls FoTlExpectedState in order to compare the
expected state values with the ones retrieved from the parameter server. When the values are com-
pared and FoTlExpectedState returns, then FtTlSCStateCheck returns to FtTlStateCheckControl-
ler.

3.4.5 Spacecraft State Check Data Dictionary

FdEvEventLogger - class that acts as an interface to DMS.

GenEvent - attribute that generates an event when called.

FmMsExpectedStateTable - class that acts as a proxy to CMS. It supplies a table of expected state
values.

FetchTable - attribute that gets a table of values from the database.

FoTlExpectedState - class that provides the list of Pids used to request the parameters from the
parameter server.

GetPid - attribute that gets the Pid's.

Compare - attribute that compares the current downlink telemetry value with a range of
expected values.

Replace - attribute that replaces the values in the expected value table with current
downlink telemetry.

UpdateTable - attribute that updates the table with expected values.

FoTlExpectedValue - class that gets the Pids and high & low values from the database.

FoPsClientBuffer - class that holds the current downlink telemetry values in a buffer.

AddParameter - attribute that adds parameters into the buffer.

FoPsClientIF - class that serves as a proxy between the parameter server and Statecheck process.

3-66 305-CD-044-001

RegisterClient - attribute that registers clients onto the parameter server.

UpdateParameters - attribute that updates parameter fields with current parameters.

UnregisterClient - attribute that unregisters clients off the parameter server.

UpdateInterests - attribute that updates interested clients .

FoPsParameters - class that contains the parameters.

FtTlSCStateCheck - class that assists in back orbit verification. It can monitor and compare the
spacecraft's state with an expected state.

Load - attribute that loads the expected values into an expected value table.

Baseline - operation that replaces the expected value table with current downlink telemetry
values.

StateCheck - operation that compares the downlink telemetry values with the expected
state.

FtTlStateCheckController - class that is responsible for controlling an instance of the state check
subsystem process. This class receives and processes configuration adjustment requests.

Initialize - operation that initializes attributes and interfaces.

Run - operation that runs the state check controller process.

Shutdown - operation that shuts down the state check controller process.

FtTlStateCheckRequest - class that acts as a proxy. It receives requests and relays the appropriate
procedure to FtTlStateCheckController.

GetRequestType - attribute that returns request type.

GetTable - attribute that gets the table of Pid's and Values.

3.5 Parameter Server
The Parameter Server process is responsible for providing a central repository where processes can
go to receive continuous or one shot parameter updates. Processes can also go to the Parameter
Server to update parameters that they generate and are responsible for providing to other processes.
Every process that updates parameters must initialize any parameter values that they serve to a de-
fault value so that anyone that requests a parameter can be assured of receiving some value in re-
turn.

Requests for service are handled via the Parameter Server's interface. A proxy interface object is
provided to any process that requires the services of the Parameter Server. Clients make requests
via calls to the interface object, thus hiding much of the interprocess communication and data for-
matting/object flattening mechanisms.

3.5.1 Parameter Server Context

The Parameter Server process receives two types of requests, one type to serve out parameters to
clients and another type of request to update parameters that are held in the Parameter Server. Any
client can use these services provided it knows what it wants or what it wants to update. The Pa-
rameter Server context diagram is shown in figure 3.5-1.

3-67
305-C

D
-044-001

Parameter
Server

TLM

CMD

FUI

RMS

DMS

RCM

ANA

Parameters

Parameters,requests

Parameters

requests

parameters

parameters,requests

parameters

parameters

requests

parameters

requests

parameters

Figure 3.5-1. Parameter Server Context Diagram

3-68 305-CD-044-001

3.5.2 Parameter Server Interfaces

3.5.3 Parameter Server Object Model

The Parameter Server is both a repository and a mechanism for sharing data between processes. It
is designed such that it can live on its own or inside another process. The object model for the pa-
rameter server (Figure 3.5-2) was developed to support such an idea. The parameter server is de-
signed to accept service calls for two types of services. One service is providing parameters to any
process that has a need for them. The other service is allowing the parameter providers the ability
to update the parameters as new values are obtained.

Table 3.5-1. Parameter Server Interfaces
Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Register Client FoPsClientIF Register a client as
continuous or oneshot

Param Server RMS,
FUI,
CMD,
ANA,
DMS

on process
startup and
as one shot
clients are
needed

Update
Parameters

FoPsClientIF Allow providers to update
parameter server

Param Server RCM,
RMS,
TLM,
CMD

TLM every
packet;
others as
needed

Unregister
Client

FoPsClientIF Allow client to disconnect
from parameter server

Param Server RMS,
FUI,
CMD,
ANA,
DMS

on process
shutdown

Update
Interests

FoPsClientIF Allow client to change its
interests

Param Server RMS,
FUI,
CMD,
ANA,
DMS

rare

AddParam to-
Buffer

FoPsClientIF Allow client to build buffer of
parameters to update

Param Server RCM,
RMS,
TLM,
CMD

whenever a
parameter
needs to be
updated

Receive Buff-
er

FoPsClientIF Allow client to receive param-
eter buffer

Param Server RMS,
FUI,
CMD,
ANA,
DMS

whenever
data is sent
to clients

3-69
305-C

D
-044-001

FoPsParameterTable

FoPsClientBuffer

FoPsRWModelParameter

RWModel

FoPsServerIF FoPsClientIF

RWModelClient

RWHashDictionary

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)
Initialize()
Run()
Shutdown()

myParameters
myClients

RegisterClient(Cid,Address,Mode,PidList)
UnregisterClient(Cid)
SetParameter(PsRWModelParameter)
GetParameter(PsRWModelParameter)
SendAllBuffers(PsClientList)

mySize

AddParameter(PsRWModelParameter)

FoPsClient

myBuffer
myAddress
myMode
myCid
myPidList

OneShot()
SendBuffer()

FtTlParameterValues

myPid
myRawValue
myDecodedValue
myConvertedValue
*myMnemonic
myFirstBitOffset
myStatus
myQuality
mySubSystemId

GetRawValue()
GetDecodedValue()
GetConvertedValue()
GetQuality()
GetSubSystemId()

FoPsClientList

myClients

AddClient(PsClient)
CheckClient(Cid)
RemoveClient(Cid)

FoPsServiceRequestMsg

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : RWCString
 - : RWHashDictionary

 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : RWHashDictionary
 - : RWHashDictionary

 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTInt
 + : EcTVoid

 - : EcTInt

 + : EcTInt

 - : RWModelClient
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt[]

 + : EcTInt
 + : EcTInt

 - : EcTInt
 - : EcTLong
 - : EcTDouble
 - : EcTDouble
 - : EcTChar
 - : EcTInt
 - : FtTlStatus
 - : EcTLong
 - : EcTLong

 + : EcTLong
 + : EcTDouble
 + : EcTDouble
 + : EcTLong
 + : EcTLong

 - : RWHashDictionary

 + : EcTInt
 + : EcTInt
 + : EcTInt

Pid

is owned by

Cid

is owned by

Figure 3.5-2. Parameter Server Object Model

3-70 305-CD-044-001

Requests for service are handled in the parameter server interface. The FoPsClientIF object is giv-
en to any process that needs services from the parameter server. When the client makes a service
call of the FoPsClientIF object it is transmitted to the FoPsServerIF via interprocess communica-
tions. Once the request is received in the FoPsServerIF object it is translated back to a service call
of the FoPsParameterTable. The FoPsParameterTable object is the repository for all of the param-
eters that it collects. A parameter ID is the key to obtaining a parameter from the FoPsParameter-
Table. All updates to the parameter objects are made through the FoPsParameterTable as well as
requests for parameters themselves. The FoPsParameterTable object also keeps a list of clients and
their respective process information. That is held in the FoPsClientList object. That list contains
FoPsClient objects which represent the external clients to the Parameter Server.

FoPsClientIF is the clients view of the parameter server. A client uses this interface to request
services from the parameter server.

FoPsServerIF is the servers view of the parameter server. The parameter server uses this object
to catch all incoming requests of the parameter server.

FoPsParameterTable is a container class of FoPsRWModelParameters. It also performs the re-
quest processing of the parameter server.

FoPsClientList is a container class of FoPsClient objects. It holds all of the client objects.

FoPsClient is an object that represents the external client of the parameter server. It contains in-
formation on client requests and the clients address and process id.

FoPsClientBuffer is an object that holds the parameters that get served to an individual client.

FoPsServiceRequestMsg is an object that represents the client information passed from the proxy
to the server.

3.5.4 Parameter Server Dynamic Model

The following are scenarios defined in this section.

Register a client as a continuous user

Register a client as a one shot user

Send buffer to continuous client

Update the interests of a continuous client

Update parameters from parameter provider

3.5.4.1 Register a Client as a Continuous User Scenario

3.5.4.1.1 Register a Client as a Continuous User Scenario Abstract

The purpose of this scenario is to describe the process by which a client is registered for continuous
parameter serving. Figure 3.5-3 is the event trace for this scenario.

3-71
305-C

D
-044-001

FoPsServerIF FoPsParameterTable FoPsClientList FoPsClient FoPsClientBuffer FoPsRWModelParamterFoPsClientIF

RegisterClient
CheckClient

Client NOT Found

new Client

new Buffer

Done

Done

AddClient

Client Added

Associate with Client

Association Successful

For
Each
Pid

Registration Conplete

RegisterClient

registration complete

Figure 3.5-3. Register a Continuous User Event Trace

3-72 305-CD-044-001

3.5.4.1.2 Register a Client as a Continuous User Summary Information

Interfaces:

An external client

Stimulus:

A client request for continuous parameter updates

Desired Response:

The client receives continuous updates of the parameters it requested

Pre-Conditions:

The parameter server is ready to accept incoming requests

Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.1.3 Register a Client as a Continuous User Scenario Description

The client calls the RegisterClient operation of the FoPsClientIF. The FoPsClientIF, in turn, calls
the RegisterClient operation of the FoPsServerIF object through interprocess object passing. Once
the call is made to the FoPsServerIF it calls the RegisterClient service of the
FoPsParameterTable. The FoPsParameterTable will determine that the mode of this registration is
continuous and create a new FoPsClient and add it to the FoPsClientList. Then it will associate the
FoPsClient with the parameters that it is interested by way of the parameter ID list that the FoP-
sClient keeps. Once the associations are made the status of this call is returned back through all of
the called objects back to the FoPsClientIF and back to the client.

3.5.4.2 Register a Client as a One Shot User Scenario

3.5.4.2.1 Register a Client as a One Shot User Scenario Abstract

The purpose of this scenario is to describe the process by which a client is registered for one shot
parameter serving. Figure 3.5-4 is the event trace for this scenario.

3.5.4.2.2 Register a Client as a One Shot User Summary Information

Interfaces:

An external client

Stimulus:

A client request for a one shot parameter update

Desired Response:

The client receives a one time update of the parameters it requested

Pre-Conditions:

The parameter server is ready to accept incoming requests

Post-Conditions:

The parameter server is ready to accept incoming requests

3-73
305-C

D
-044-001

FoPsServerIF FoPsParameterTable FoPsClientList FoPsClient FoPsClientBuffer FoPsParameterTableFoPsClientIF

RegisterClient

CheckClient

Client Not Found

new Client

new Buffer

Done

Done

OneShot

AddParameter
GetParameter

Done

Parameter Added

For
Each
Pid

Done

SendBuffer

Done

Done

RegisterClient

Buffer sent

Figure 3.5-4. Register a One Shot User Event Trace

3-74 305-CD-044-001

3.5.4.2.3 Register a Client as a One Shot User Scenario Description

The client calls the RegisterClient operation of the FoPsClientIF. The FoPsClientIF, in turn, calls
the RegisterClient operation of the FoPsServerIF object through interprocess object passing. Once
the call is made to the FoPsServerIF it calls the RegisterClient service of the FoPsParameterTable.
The FoPsParameterTable will determine that the mode of this registration is one shot and create a
new FoPsClient. It will then cycle through all of the parameter IDs in the client's parameter ID list
and get each parameter from the FoPsParameterTable and place it in the FoPsClientBuffer. Once
all of the parameters are in the buffer it is sent back to the client through the FoPsClientIF.

3.5.4.3 Send Buffer to a Continuous Client Scenario

3.5.4.3.1 Send Buffer to a Continuous Client Scenario Abstract

The purpose of this scenario is to describe the process by which a client is registered for continuous
parameter serving. Figure 3.5-5 is the event trace for this scenario.

3.5.4.3.2 Send Buffer to a Continuous Client Summary Information

Interfaces:
An external client

Stimulus:
A client request for continuous parameter updates

Desired Response:
The client receives a buffer of the parameters it requested

Pre-Conditions:
The parameter server has received updates of parameters requested by the client

Post-Conditions:
The parameter server is ready to accept incoming requests

3.5.4.3.3 Send Buffer to a Continuous Client Scenario Description

The Parameter Server will make updates to all of the parameters from a provider and determine if
any clients are interested in them. This client has an interest in a parameter that was updated so it
is put in the clients buffer. When the provider is done updating the parameters the FoPsParame-
terTable will call its SendAllBuffers operation which will in turn call the SendBuffer operation of
all of the FoPsClients that have buffers that have at least one parameter in them and they will be
sent to each client.

3.5.4.4 Update the Interests of a Client Scenario

3.5.4.4.1 Update the Interests of a Client Scenario Abstract

The purpose of this scenario is to describe the process by which a client updates the parameters in
which it has an interest in receiving. Figure 3.5-6 is the event trace for this scenario.

3.5.4.4.2 Update the Interests of a Client Summary Information

Interfaces:

An external client

3-75
305-C

D
-044-001

FoPsServerIF FoPsParameterTable FoPsClient

send all buffers

send buffer

buffer sent

for
each
client

done

Figure 3.5-5. Send Buffer to Continuous Client Event Trace

3-76
305-C

D
-044-001

FoPsServerIF FoPsClientListFoPsParameterTableFoPsClientIF

update interests

check client

client found

done

unregister
client

register client

done

Update Interests

Figure 3.5-6. Update Client Interests Event Trace

3-77 305-CD-044-001

Stimulus:

A client requests an update of his interests

Desired Response:

The client information of his interests is updated

Pre-Conditions:

The parameter server is ready to accept incoming requests

Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.4.3 Update the Interests of a Client Scenario Description

The client will call the UpdateInterests operation of the FoPsClientIF who will in turn call the Up-
dateInterests operation of the FoPsServerIF. Once in the FoPsServerIF it will call the UpdateIn-
terests operation of the FoPsParameterTable. It will check to see if the client exists or not and if
the client exists it will call its UnregisterClient operation to remove the old parameter associations
and then it will call its RegisterClient operation to essentially re-register the client with its new in-
terests and then return the status back through the called objects to the FoPsClientIF which will
relay the status of the call to the client.

3.5.4.5 Update Parameters from a Parameter Provider Scenario

3.5.4.5.1 Update Parameters from a Parameter Provider Scenario Abstract

The purpose of this scenario is to describe the process by which a parameter producer updates pa-
rameters in the parameter server. Figure 3.5-7 is the event trace for this scenario.

3.5.4.5.2 Update Parameters from a Parameter Provider Summary Information

Interfaces:

An external client

Stimulus:

A client requests to update parameters

Desired Response:

The parameters the client provides are updated in the parameter table

Pre-Conditions:

The parameter server is ready to accept incoming requests

Post-Conditions:

The parameter server is ready to accept incoming requests

3.5.4.5.3 Update Parameters from a Parameter Provider Scenario Description

For each parameter that the client wants to update it will call the AddParamToBuffer operation on
the FoPsClientIF. That will put the parameter in a temporary buffer. Once all of the parameters

3-78 305-CD-044-001

are in the temporary buffer the client will call the UpdateParameters operation of the FoPsClientIF.
The FoPsClientIF will call the UpdateParameters operation of the FoPsServerIF who will in turn
call the UpdateParameters operation of the FoPsParameterTable. The FoPsClientIF will then re-
turn to the control to the client so that the client can go back and do whatever it needs to do without
waiting for the parameters to update. The FoPsParameterTable will take each parameter from the
temporary buffer and update the corresponding parameter in the table with the new information.

3.5.5 Parameter Server Data Dictionary

FoPsClient

class FoPsClient

This class is used to create, destroy and process any client which expresses an interest in any
parameter contained within the parameter table.

Public Construction

FoPsClient(RWCString myAddress, EcTInt myMode, RWCString myCid, EcTInt myP-
idList)

This member function is the default constructor for this class.

~FoPsClient(EcTVoid)

FoPsClient

This member function is the destructor for this class.

Public Functions

EcTInt OneShot(EcTVoid)

This member function will process a client which is requesting that Pid values be sent to
him once only. Hence the name OneShot.

EcTInt SendBuffer(EcTVoid)

This member function will send the buffer which contains the requested Pid's to its respec-
tive client.

Private Data

RWCString myAddress

This member variable identifies the address/port of the client

RWModelClient myBuffer

This member variable identifies the address of the clients Pid buffer

RWCString myCid

This member variable identifies the client by id/name

3-79
305-C

D
-044-001

FoPsClientIF PsServerIF FoPsParameterTable FoPsRWModelParameter

update parameters

find parameter

set parameter

for each
parameter

in
buffer

parameter found

parameter set

Figure 3.5-7. Update Parameters from Provider Event Trace

3-80 305-CD-044-001

EcTInt myMode

This member variable identifies the type/mode of client making the request, i.e. "continu-
ous" or "one-shot".

EcTInt myPidList[]

This member variable contains the Pid's which the requesting client has an interest.

FoPsClientBuffer

class FoPsClientBuffer

This class is used to create and destroy a client buffer along with the capability of adding pa-
rameters to the clients parameter buffer.

Public Construction

FoPsClientBuffer(EcTVoid)

This member function is the default constructor for this class.

~FoPsClientBuffer(EcTVoid)

This member function is the destructor for this class

Public Functions

EcTInt AddParameter(FoPsRWModelParameter)

This member function is used for adding parameters to the clients parameter buffer.

Private Data

EcTInt mySize

This member variable identifies the current buffer size

FoPsClientIF

class FoPsClientIF

This class is the client representation of a parameter server. This object is given to all processes
that which to use the services of a parameter server.

Base Classes

public PsParameterServerIF

Public Functions

EcTEcTVoid FoPsServerIF()

This member function is the default constructor for this class.

EcTInt RegisterClient(RWCString Cid, RWCString Address, EcTInt Mode, EcTInt
PidList[])

This member function allows the client to register to receive either a oneshot request or a

3-81 305-CD-044-001

continuous request for parameters.

EcTEcTVoid UnregisterClient(RWCString Cid)

This member function allows a client to unregister an interest in parameters.

EcTInt UpdateInterests(RWCString Cid, EcTInt PidList[])

This member function allows a client to change his parameter interests.

EcTEcTVoid UpdateParameters(FoPsClientBuffer PidBuffer)

This member function allows a parameter producer to update the parameters that it gener-
ates.

Private Data

RWCString myAddress

This member variable is the address of the parameter server.

FoPsClientList

class FoPsClientList

This class is used to contain client objects who have contacted the parameter server with a reg-
istered interest of specific parameters.

Public Construction

FoPsClientList()

This member function is the default constructor for this class.

~FoPsClientList()

This member function is the destructor for this class

Public Functions

EcTInt AddClient(FoPsClient)

This member function adds a client to the client list

EcTInt CheckClient(Cid)

This member function searches the client list to see if the client already is registered.

EcTInt RemoveClient(Cid)

This member function removes a client from the client list

FoPsParameterTable

class FoPsParameterTable

This class is the keeper of all of the parameters for a parameter server. Anything that you might
want out of a parameter can be gotten through the parameter table.

3-82 305-CD-044-001

Public Functions

EcTEcTVoid FoPsParameterTable()

This member function is the default constructor for this class.

EcTInt GetParameter(FoPsRWModelParameter Param)

This member function will get a parameter and return it to the requester.

EcTEcTVoid RegisterClient(RWCString Cid, RWCString Address, EcTInt Mode, EcTInt
PidList[])

This member function will register a client with the parameter table.

EcTEcTVoid SendAllBuffers(FoPsClientList myClients)

This member function will send all the client buffers to their respective clients.

EcTInt SetParameter(FoPsRWModelParameter Param)

This member function will set the values of a parameter.

EcTEcTVoid UnregisterClient(RWCString Cid)

This member function will remove a client from the parameter server.

Private Data

FoPsClientList myClients

This member variable is the object that holds all of the clients.

FoPsServerIF

class FoPsServerIF

This class represents the server side of the interface between the parameter server and the out-
side world.

Base Classes

public FoPsParameterServerIF

Public Functions

EcTEcTVoid FoPsServerIF()

This member function is the default constructor for this class.

EcTEcTVoid Initialize()

This member function initializes all of the objects that are needed to start a parameter serv-
er.

EcTEcTVoid RegisterClient(RWCString Cid, RWCString Address, EcTInt Mode, EcTInt
PidList[])

This member function will register a client to receive continuous parameter updates or a
one-shot of parameters.

3-83 305-CD-044-001

EcTEcTVoid Run()

This member function will start the parameter server and get the parameter server ready to accept
requests for parameters and requests to update parameters.

EcTEcTVoid Shutdown()

This member function will nicely terminate a parameter server.

EcTInt UnregisterClient(RWCString Cid)

This member function allows the client to terminate a request for continuous parameter updates.

EcTInt UpdateInterests(RWCString Cid, EcTInt PidList[])

This member function allows a client to modify the list of parameters that it has an interest in.

EcTEcTVoid UpdateParameters(PidBuffer)

This member function allows the parameter provider to update parameters that it generates.

Private Data

RWCString myAddress

This member variable is the clients address

FoPsParameterTable myParameterTable

This member variable is the parameter table.

ServiceRequestMessage

class ServiceRequestMessage

Base Classes

public RWCollectable

Protected Data

RWOrdered myServiceArgList

This member variable corresponds to the argument list to be passed to the parameter server.

eService myServiceId

attributes myServiceId

This member variable corresponds to the Id number of the service being requested.

Inherited from class "RWCollectable"

eService

enum eService

This member variable will define available services

3-84 305-CD-044-001

This page intentionally left blank.

AB-1 305-CD-044-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-2 305-CD-044-001

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

Ecom EOS Communication

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

EOC Earth Observation Center (Japan);
EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

AB-3 305-CD-044-001

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeking

HST Hubble Space Telescope

AB-4 305-CD-044-001

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;
Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

AB-5 305-CD-044-001

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDL Program Design Language

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

AB-6 305-CD-044-001

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;
Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

AB-7 305-CD-044-001

T&C Telemetry and Command

TAE Transportable Applications Environment

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;
Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

XTE X-Ray Timing Explorer

AB-8 305-CD-044-001

This page intentionally left blank.

GL-1 305-CD-044-001

Glossary

 GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

attitude data Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

• Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
quaternions, rates and biases, and associated parameters.

• Attitude generated onboard in quaternion or Euler angle form.

• Refined and routine production data related to the accuracy or
knowledge of the attitude.

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean down
time [before restoration of function].

GL-2 305-CD-044-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive action,
a system will operate satisfactorily at any time. The “ideal
support environment” referred to, exists when the stipulated
tools, parts, skilled work force manuals, support equipment and
other support items required are available. Inherent availability
excludes whatever ready time, preventive maintenance
downtime, supply downtime and administrative downtime may
require. Ai can be expressed by the following formula:

 Ai = MTBF/ (MTBF + MTTR)

Where:MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair

availability
(operational)
(Ao)

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ao can be expressed by
the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics actions are all
considered.

ST = Standby Time (or switch over time)

baseline
activity profile

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
term plans (i.e., LTSP, LTIP, and long term spacecraft operations
plan).

build An assemblage of threads to produce a gradual buildup of system
capabilities.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software routines,
and ground truth data that are to be used in the data calibration
processing routine.

GL-3 305-CD-044-001

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and
data handling
(C&DH)

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

command
group

A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination on
board. For the U.S. spacecraft, from the perspective of the EOS
Operations Center (EOC), a preplanned command group is
preprocessed by, and stored at, the EOC in preparation for later
uplink. A real-time command group is unplanned in the sense
that it is not preprocessed and stored by the EOC.

detailed
activity
schedules

The schedule for a spacecraft and instruments which covers up to
a10 day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

direct broadcast Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

EOS Data and
Operations
System

(EDOS)
production
data set

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/
accounting (Q/A) metadata appended. Time span or number of
packets encompassed in a single data set are specified by the
recipient of the data. These data sets are equivalent to Level 0
data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with quality
and accounting information from each individual packet and the
data set itself and with essential formatting information for
unambiguous identification and subsequent processing.

GL-4 305-CD-044-001

housekeeping
data

The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

instrument • A hardware system that collects scientific or operational data.

• Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

• An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in an
observational environment.

instrument
activity
deviation list

An instrument's activity deviations from an existing

instrument activity list, used by the EOC for developing the
detailed activity schedule.

instrument
activity list

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

instrument
engineering
data

subset of telemetered engineering data required for performing
instrument operations and science processing

instrument
microprocessor
 memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

instrument
resource
deviation list

An instrument's anticipated resource deviations from an

existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

instrument
resource profile

Anticipated resource needs for an instrument over a target

week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

instrument
science data

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

long-term
instrument
plan (LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated approximately
every six months and covers a period of up to approximately 5
years.

GL-5 305-CD-044-001

long-term
science plan
(LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six months and covers a period of up to approximately five
years.

long term
spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

mean time
between failure
(MTBF)

mean down
time (MDT)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/operating
time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

mean time
between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow the relationship: 1/MTBM = 1/MTBPM + 1/
MTBCM

mean time to
repair (MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design parameters.

object Identifiable encapsulated entities providing one or more services
that clients can request. Objects are created and destroyed as a
result of object requests. Objects are identified by client via
unique reference.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position (including
the time system); some accuracy requirements may be hundreds
of meters while other may be a few centimeters.

playback data Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

GL-6 305-CD-044-001

preliminary
resource
schedule

An initial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

preplanned
stored
command

A command issued to an instrument or subsystem to be executed
at some later time. These commands will be collected and
forwarded during an available uplink prior to execution.

principal
investigator
(PI)

An individual who is contracted to conduct a specific scientific
investigation. (An instrument PI is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on a faster time scale than the incremental and formal
development track.

raw data Data in their original packets, as received from the spacecraft and
instruments, unprocessed by EDOS.

• Level 0 – Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A – Level 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

• Level 1B – Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

• Level 2 – Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same location and
similar resolution as the Level 1 source data.

• Level 3 – Data or retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from

real-time data Data that are acquired and transmitted immediately to the ground
(as opposed to playback data). Delay is limited to the actual time
required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

GL-7 305-CD-044-001

SCC-stored
commands and
tables

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometime following their storage. The term “core-stored”
applies only to the location where the items are stored on the
spacecraft and instruments; core-stored commands or tables
could be associated with the spacecraft or any of the instruments.

scenario A description of the operation of the system in user’s
terminology including a description of the output response for a
given set of input stimuli. Scenarios are used to define operations
concepts.

segment One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment

FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

 • Sensor name: The name of the satellite sensor which was used
to obtain that data.

spacecraft
engineering
data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems
activity list

A spacecraft subsystem's list of activities that nominally covers

seven days, used by the EOC for developing the detailed activity
schedule.

spacecraft
subsystems
resource profile

Anticipated resource needs for a spacecraft subsystem over a

target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

target of
opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

GL-8 305-CD-044-001

thread,

as used
in some
Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion
of a scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced
	Figure 3.1-1. Telemetry Context Diagram
	Figure 3.2-1. Telemetry Decommutation Context Diag...
	Figure 3.2-4. Derived Telemetry Object Model

	3. Telemetry
	3.1 Telemetry Context Description
	3.2 Telemetry Decommutation
	3.2.1 Telemetry Decommutation Context
	3.2.2 Telemetry Decommutation Interfaces
	3.2.3 Telemetry Decommutation Object Model
	3.2.4 Telemetry Decommutation Dynamic Model
	3.2.5 Telemetry Decommutation Data Dictionary

	3.3 Memory Dump
	3.3.1 Memory Dump Context
	3.3.2 Memory Dump Interfaces
	3.3.3 Memory Dump Object Model
	3.3.4 Memory Dump Dynamic Model
	3.3.5 Memory Dump Data Dictionary

	3.4 Spacecraft State Check
	3.4.1 Spacecraft State Check Context
	3.4.2 Spacecraft State Check Interfaces
	3.4.3 Spacecraft State Check Object Model
	3.4.4 Spacecraft State Check Dynamic Model
	3.4.5 Spacecraft State Check Data Dictionary

	3.5 Parameter Server
	3.5.1 Parameter Server Context
	3.5.2 Parameter Server Interfaces
	3.5.3 Parameter Server Object Model
	3.5.4 Parameter Server Dynamic Model
	3.5.5 Parameter Server Data Dictionary

	Figure 3.2-2. Telemetry Decommutation Object Model...
	Figure 3.2-3. Parameter Table Object Model
	Figure 3.2-5. Decommutate an EDU Event Trace
	Figure 3.2-6. Select Subsystem Decommutation Mode ...
	Figure 3.2-7. Turn Archiving Mode On Event Trace
	Figure 3.2-8. Read a Database Event Trace
	Figure 3.2-9. Telemetry Derived Parameters Event T...
	Figure 3.2-10. Set Polynomial Coefficients for EU ...
	Figure 3.2-11. Request to Adjust Limits Event Trac...
	Figure 3.2-12. Obtain Current Limit Values Event T...
	Figure 3.2-13. Parameter Updating Event Trace
	Figure 3.3-1. Memory Dump Context Diagram
	Figure 3.3-2. Memory Dump Object Model
	Figure 3.3-3. Memory Dump State Transition Diagram...
	Figure 3.3-4. Awaiting Message State Event Trace
	Figure 3.3-5. Dump Mode State Event Trace
	Figure 3.4-1. Spacecraft State Check Context Diagr...
	Figure 3.4-2. Spacecraft State Check Object Model
	Figure 3.4-3. Initialize Spacecraft State Check Ev...
	Figure 3.4-4. Load Expected State Table Event Trac...
	Figure 3.4-5. State Check BaseLine Event Trace
	Figure 3.4-6. State Check Perform Event Trace
	Figure 3.5-1. Parameter Server Context Diagram
	Figure 3.5-2. Parameter Server Object Model
	Figure 3.5-3. Register a Continuous User Event Tra...
	Figure 3.5-4. Register a One Shot User Event Trace...
	Figure 3.5-5. Send Buffer to Continuous Client Eve...
	Figure 3.5-6. Update Client Interests Event Trace

	Abbreviations and Acronyms
	Glossary

